Physics / Fizik
Permanent URI for this collectionhttps://hdl.handle.net/11147/6
Browse
Browsing Physics / Fizik by Journal "Advanced Materials Interfaces"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Anisotropic Tunability of Vibrational Modes in Black Phosphorus Under Uniaxial Compressive/Tensile Strain(Wiley, 2023) Li, Hao; Kutlu, Tayfun; Carrascoso, Felix; Şahin, Hasan; Munuera, Carmen; Castellanos Gomez, Andres; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyStrain engineering is a powerful strategy for tuning the optical, electrical, vibrational properties of 2D nanomaterials. In this work, a four-point bending apparatus is constructed to apply both compressive and tensile strain on 2D anisotropic black phosphorus flake. Further polarized Raman spectroscopy is used to study the vibrational modes of black phosphorus flakes under uniaxial strain applied along various crystalline orientations. Here, a strong anisotropic blue/redshift of A1g, B2g, and A2g modes is found under compressive/tensile strain, respectively. Interestingly, mode A1g exhibits the maximum/minimum shift while mode B2g and mode A2g present the minimum/maximum shift when the strain is applied along armchair/zigzag direction. Density functional theory calculations are carried out to investigate the anisotropic strain response mechanism, finding that the strain-induced regulation of the PP bond angle, bond length, and especially interlayer interaction has a giant influence on the Raman shift. A four-point bending apparatus is constructed to study the effect of uniaxial strain on the vibrational property of anisotropic black phosphorus. Particularly, strong anisotropy on the Raman blueshift/redshift rate upon compressive/tensile strain can be observed, which results from the strain-induced regulation of the bond angle, bond length, and interlayer interactions according to density functional theory calculation analysis.image