Chemistry / Kimya
Permanent URI for this collectionhttps://hdl.handle.net/11147/4072
Browse
Browsing Chemistry / Kimya by Journal "ACS Applied Energy Materials"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Citation - WoS: 38Citation - Scopus: 39Ultralong-Life Quinone-Based Porous Organic Polymer Cathode for High-Performance Aqueous Zinc-Ion Batteries(American Chemical Society, 2023) Büyükçakır, Onur; Yüksel, Recep; Begar, Ferit; Erdoğmuş, Mustafa; Arsakay, Madi; Lee, Sun Hwa; Kim, Sang Ouk; 04.01. Department of Chemistry; 04. Faculty of Science; 01. Izmir Institute of TechnologyWe synthesized and studied a redox-active quinone-basedporousorganic polymer (rPOP) and found ultralong cycle life: it is a promisingorganic cathode for aqueous zinc-ion batteries (ZIBs). It has highphysicochemical stability and enhanced intrinsic conductivity fromits fused-aromatic conjugated skeleton. rPOP's high porosityallows for efficient Zn2+ infiltration through the poresduring charging-discharging cycles and contributes to the efficientutilization of redox-active quinone units. It delivers a specificcapacity of 120 mAh g(-1) at a current density of0.1 A g(-1) with a flat and long discharge plateau,which is critically important to provide a stable voltage output.It provides ultralong cycle life at a current density of 1.0 A g(-1) for 1000 and at 2.0 A g(-1) for 30 000cycles, with initial capacity retention of 95 and 66%, respectively.The co-insertion (Zn2+ and H+) charge storagemechanism was investigated using various electrochemical measurementsand ex/in situ structural characterization techniques, and is explainedherein. These findings contribute to a better understanding of thestructure-property relationship for rPOP and open a new avenuefor new organic cathode materials for high-performance next-generationaqueous batteries.