Food Engineering / Gıda Mühendisliği
Permanent URI for this collectionhttps://hdl.handle.net/11147/12
Browse
Browsing Food Engineering / Gıda Mühendisliği by Subject "Adsorbent"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Citation - WoS: 10Citation - Scopus: 11Synthesis of Adsorbents With Dendronic Structures for Protein Hydrophobic Interaction Chromatography(Elsevier Ltd., 2016-04-22) Mata-Gomez, Marco A.; Yaman, Sena; Valencia-Gallegos, Jesus A.; Tarı, Canan; Rito-Palomares, Marco; Gonzalez-Valdez, Jose; 03.08. Department of Food Engineering; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyHere, we introduced a new technology based on the incorporation of dendrons-branched chemical structures-onto supports for synthesis of HIC adsorbents. In doing so we studied the synthesis and performance of these novel HIC dendron-based adsorbents. The adsorbents were synthesized in a facile two-step reaction. First, Sepharose 4FF (R) was chemically modified with polyester dendrons of different branching degrees i.e. third (G3) or fifth (G5) generations. Then, butyl-end valeric acid ligands were coupled to dendrons via ester bond formation. UV-vis spectrophotometry and FTIR analyses of the modified resins confirmed the presence of the dendrons and their ligands on them. Inclusion of dendrons allowed the increment of ligand density, 82.5 ± 11 and 175.6 ± 5.7 μmol ligand/mL resin for RG3 and RG5, respectively. Static adsorption capacity of modified resins was found to be ~60 mg BSA/mL resin. Interestingly, dynamic binding capacity was higher at high flow rates, 62.5 ± 0.8 and 58.0 ± 0.5 mg/mL for RG3 and RG5, respectively. RG3 was able to separate lipase, β-lactoglobulin and α-chymotrypsin selectively as well as fractionating of a whole proteome from yeast. This innovative technology will improve the existing HIC resin synthesis methods. It will also allow the reduction of the amount of adsorbent used in a chromatographic procedure and thus permit the use of smaller columns resulting in faster processes. Furthermore, this method could potentially be considered as a green technology since both, dendrons and ligands, are formed by ester bonds that are more biodegradable allowing the disposal of used resin waste in a more ecofriendly manner when compared to other exiting resins.