Graphene Transfer Approaches With Different Support Materials on the Substrates With Cavities

dc.contributor.advisor Balantekin, Müjdat
dc.contributor.advisor Çelebi, Cem
dc.contributor.author Duman, Sinem
dc.contributor.other 03.05. Department of Electrical and Electronics Engineering
dc.contributor.other 04.05. Department of Pyhsics
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 04. Faculty of Science
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2019-12-16T11:24:07Z
dc.date.available 2019-12-16T11:24:07Z
dc.date.issued 2019-07
dc.description Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2019 en_US
dc.description Includes bibliographical references (leaves: 51-59) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract A micro capacitive sensor characteristically embraces a thin conductive membrane which is freely suspended above an immovable counter electrode in a parallel plate geometry. Such capacitive structures are found in broad range of applications as a transducer like capacitive micro-machined ultrasonic transducer (CMUT), pressure sensor, resonator and biological or chemical material sensing element. The input can be an ultrasound wave, pressure, chemical or biological mass attachment which result in the deflection of the membrane. Emerging nano materials have shown great potential as candidates for generation of nano and micro electromechanical systems (NEMS, MEMS). Among these nano materials, graphene is regarded as a promising material because of its ultra low mass, thickness, high surface to volume ratio, flexibility, and extraordinary electrical and mechanical properties. However, the transfer of graphene on substrates with micro scale cavities is challenging since the fabrication of large area membranes with a smaller air gap often results in membrane tearing or collapse driven by capillary or electrostatic forces. This study presents a research on the fabrication and the characterization of graphene membranes to be used in micro capacitive sensor applications. Substrates which span a large array of circular and hexagonal micro cavities between 2-100 μm in diameter are fabricated. Graphene transfer with different support materials are studied to fabricate graphene micro membranes. Up to 5 μm diameter membranes on 300 nm deep cavities are demonstrated via scanning electron microscope (SEM) and atomic force microscope (AFM) tools. en_US
dc.description.abstract Mikro kapasitif sensör, karakteristik olarak, iletken ve hareketsiz duran bir alt elektrot ile buna paralel olarak yerleştirilmiş iletken ve hareket edebilen bir üst elektrottan oluşur. Bu yapı, kapasitif mikro-işlenmiş ultrasonik çevirgeç, basınç sensörü, resonatör ve biyolojik yada kimyasal madde algılama elemanı gibi uygulamalarda dönüştürücü olarak bulunabilir. Membran yapısında eğilmeye yol açan fiziksel girdi ultrason dalgası, basınç, biyolojik yada kimyasal bir malzeme olabilir. Nano malzemeler, yeni nesil nano ve mikro elektro mekanik sistemlerin (NEMS, MEMS) geliştirilmesinde büyük potansiyele sahiptir. Nano malzemelerin arasında grafen çok küçük kütlesi, yüksek yüzey hacim oranı, esnekliği, özel elektriksel ve mekanik özelliklerinden dolayı öne çıkan bir malzemedir. Ancak, grafenin kapasitif yapılar oluşturmak üzere mikro ölçekte oyuklu örnekler üzerine aktarılması kılcal veya elektrostatik kuvvetlerin etkisinden ötürü membran yapısının çökmesi veya yırtılması ile sonuçlanabilir. Bu çalışma, kapasitif mikro sensör olarak kullanılmak üzere çok ince grafen membranlarının oluşturulmasını ve karakterizasyonunu içermektedir. Bu amaç ile çapları 2 ile 100 μm arasında değişen deşikli alttaşlar hazırlanmıştır. Grafen mikro membran üretimi için, farklı destek malzemeleri kullanılarak, grafen transferi gerçekleştirilmiştir. 300 nm derinliğinde deşikli yapılar üzerinde çapları 5 μm'ye kadar ulaşan grafen membranlar taramalı elektron ve atomik kuvvet mikroskobu ölçümleri ile gösterilmiştir. en_US
dc.description.sponsorship TUBITAK (117F186) en_US
dc.format.extent xii, 56 leaves
dc.identifier.citation Duman, S. (2019). Graphene transfer approaches with different support materials on the substrates with cavities. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkey en_US
dc.identifier.uri https://hdl.handle.net/11147/7485
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.relation.tubitak info:eu-repo/grantAgreement/TUBITAK/MFAG/117F186
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Graphene en_US
dc.subject Electromechanical systems en_US
dc.subject Micro cavities en_US
dc.title Graphene Transfer Approaches With Different Support Materials on the Substrates With Cavities en_US
dc.title.alternative Oyuklu Alt Taşlar Üzerinde Farklı Destek Malzemeleri ile Grafen Aktarma Yaklaşımları en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Duman, Sinem
gdc.author.institutional Balantekin, Müjdat
gdc.author.institutional Duman, Sinem
gdc.author.institutional Çelebi, Cem
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Thesis (Master)--İzmir Institute of Technology, Electrical and Electronics Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication 529ce24d-81b6-4c7d-92ee-3d3c8470c76e
relation.isAuthorOfPublication 033abeab-0969-4574-b3bb-11e0a5283724
relation.isAuthorOfPublication 622f2672-95ab-448c-820c-1073c6491f0c
relation.isAuthorOfPublication.latestForDiscovery 529ce24d-81b6-4c7d-92ee-3d3c8470c76e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4018-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4009-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4005-8abe-a4dfe193da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4018-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
T002040.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format
Description:
MasterThesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: