Ai-Assisted Survival Prediction in Colorectal Cancer: a Clinical Decision Support Tool

dc.contributor.author Leblebici, Asım
dc.contributor.author Mısırlıoğlu, Hüseyin Koray
dc.contributor.author Koçal, Gizem Çalıbaşı
dc.contributor.author Ellidokuz, Hülya
dc.contributor.author Başpınar, Yasemin
dc.contributor.other 01.01. Units Affiliated to the Rectorate
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2024-10-07T11:42:11Z
dc.date.available 2024-10-07T11:42:11Z
dc.date.issued 2021
dc.description.abstract Purpose: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Accurate survival prediction is crucial for advanced-stage patients to optimize treatment strategies and improve clinical outcomes. This study aimed to develop an artificial intelligence-assisted clinical decision support system (CDSS) for survival prediction in CRC patients using clinical and genomic data from the Cancer Genome Atlas Colon Adenocarcinoma Collection (TCGA-COAD) dataset. Methods: Machine learning algorithms, including C4.5 Decision Tree, Support Vector Machines (SVM), Random Forest, and Naive Bayes, were employed to create survival prediction models. Clinical parameters and genomic data from key pathways, such as glycolysis/gluconeogenesis and mTORC1, were integrated into the models. The models were evaluated based on accuracy and performance. Results: The Random Forest algorithm achieved the highest accuracy (82.3%) when only clinical parameters were used. When clinical data were combined with gene expression data, the model’s accuracy increased further. The resulting models were incorporated into a user-friendly web interface, SurvCOCA, for clinical use. Conclusions: This study demonstrates the potential of AI-based tools to improve prognosis predictions in CRC patients. Further research is needed, with larger datasets and additional machine learning algorithms, to enhance clinical decision-making and optimize treatment strategies. en_US
dc.identifier.doi 10.30621/jbachs.1551015
dc.identifier.issn 2564-7288 en_US
dc.identifier.uri https://doi.org/10.30621/jbachs.1551015
dc.identifier.uri https://hdl.handle.net/11147/14850
dc.language.iso en en_US
dc.publisher dergipark en_US
dc.relation.ispartof Journal of Basic and Clinical Health Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Colorectal cancer en_US
dc.subject Survival prediction en_US
dc.subject Artificial intelligence en_US
dc.subject Clinical decision support system en_US
dc.subject Machine learning en_US
dc.title Ai-Assisted Survival Prediction in Colorectal Cancer: a Clinical Decision Support Tool en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-5197-6631
gdc.author.id 0000-0002-5197-6631 en_US
gdc.author.institutional Leblebici, Asım
gdc.author.institutional Leblebici, Asım
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.contributor.affiliation 01. Izmir Institute of Technology en_US
gdc.contributor.affiliation Dokuz Eylül Üniversitesi en_US
gdc.contributor.affiliation Dokuz Eylül Üniversitesi en_US
gdc.contributor.affiliation Dokuz Eylül Üniversitesi en_US
gdc.contributor.affiliation Dokuz Eylül Üniversitesi en_US
gdc.description.department İzmir Institute of Technology. Rectorate en_US
gdc.description.endpage 778 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 771 en_US
gdc.description.volume 8 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4402961273
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.635068E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Colorectal cancer;survival prediction;artificial intelligence;clinical decision support system;machine learning
gdc.oaire.keywords Translational and Applied Bioinformatics
gdc.oaire.keywords Translasyonel ve Uygulamalı Biyoinformatik
gdc.oaire.popularity 3.0009937E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 1
relation.isAuthorOfPublication d8c52bd0-0edc-4f26-8e76-76839b447109
relation.isAuthorOfPublication.latestForDiscovery d8c52bd0-0edc-4f26-8e76-76839b447109
relation.isOrgUnitOfPublication 9711dc3e-de1f-44ab-8c8a-00d8a2db8ba5
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9711dc3e-de1f-44ab-8c8a-00d8a2db8ba5

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
14850.pdf
Size:
1000.89 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: