Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Control of Dynamics System Behaviour by Magnetorheological and Varible Orifice Dampers

dc.contributor.advisor Özdemir, Serhan
dc.contributor.author Kınay, Gökçe
dc.contributor.other 03.10. Department of Mechanical Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2014-07-22T13:48:40Z
dc.date.available 2014-07-22T13:48:40Z
dc.date.issued 2013-07
dc.description Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2014 en_US
dc.description Includes bibliographical references (laves: 191-203) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description xix, 242 leaves en_US
dc.description Full text release delayed at author's request until 2016.12.19 en_US
dc.description.abstract Passive and semi-active control devices are widely utilized for response reduction in civil engineering structures subjected to strong earthquakes. These devices absorb energy from the system. They do not add energy into the system being controlled. Therefore, the system stays stable in the sense of bounded-input-bounded-output stability. In the current study, semi-actively controlled devices were investigated: magnetorheological dampers (MRDs) and variable orifice dampers (VODs). Various control schemes were applied to control the seismic response of a three-storey model structure. Some of these control systems were composed of MRDs applied to the bare model structure. Some of them consisted of hybrid application of MRD or VOD to the seismic isolated model structure. The hybrid control, which consisted of passive and semi-active controllers, was studied in order to benefit from advantages of both strategies and to compensate for their weak properties. In the simulations, different controllers were designed depending on the linear quadratic regulator (LQR), sliding mode control, H2/LQG, fuzzy logic, and linear quadratic Gaussian (LQG). The effectiveness of the control algorithms and the usefulness of semi-active dampers for response reduction were demonstrated through various numerical examples. Kalman-Bucy filter was designed due to the necessity of an observer in real-world applications with state feedback control. Additional damping at the base level reduced the base velocity directly and decreased the base displacement indirectly at the expense of larger drifts and floor accelerations of the superstructure. The study has shown that the hybrid control system can prevent or significantly reduce structural damage during a seismic event even in case of a frequency overlap of excitation and system. Additionally, vibration response of a truck seat was controlled by three different passive dampers and the MRD. The passive dampers could effectively reduce the oscillations of the truck seat. On the other hand, the capacity of the RD-1005-3 MRD was excessive for the suspension system of the current truck seat. en_US
dc.identifier.uri http://hdl.handle.net/11147/2963
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcsh Damping (Mechanics) en
dc.subject.lcsh Seismic waves--Damping en
dc.title Control of Dynamics System Behaviour by Magnetorheological and Varible Orifice Dampers en_US
dc.type Doctoral Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Kınay, Gökçe
gdc.author.institutional Özdemir, Serhan
gdc.coar.access open access
gdc.coar.type text::thesis::doctoral thesis
gdc.description.department Thesis (Doctoral)--İzmir Institute of Technology, Mechanical Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication ed617122-9065-40c3-8965-9065b708d565
relation.isAuthorOfPublication.latestForDiscovery ed617122-9065-40c3-8965-9065b708d565
relation.isOrgUnitOfPublication 9af2b05f-28ac-4022-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4022-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10022436.pdf
Size:
27.13 MB
Format:
Adobe Portable Document Format
Description:
DoctoralThesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: