Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Numerical Investigation of Gas Transport Through Micro/Nano-scale Porous Media at Slip Flow Regime

dc.contributor.advisor Barışık, Murat
dc.contributor.author Sabet, Safa
dc.contributor.other 03.10. Department of Mechanical Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 03. Faculty of Engineering
dc.date.accessioned 2022-02-02T11:59:12Z
dc.date.available 2022-02-02T11:59:12Z
dc.date.issued 2021-11
dc.description Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2021 en_US
dc.description Includes bibliographical references (leaves. 77-90) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description.abstract Gas flow in micro/nano-scale porous systems is observed in many applications and technologies. Gas dynamics at such small scales differ from conventional fluid dynamics estimations due to rarefaction effects. In the literature, the Knudsen number (Kn) for the characterization of rarefaction effects on permeability is calculated based on a characteristic flow height estimated from the pore size, while the geometric parameters such as pore shape and pore-throat ratios are mostly ignored. Therefore, an accurate characterization of rarefaction effects could not be ascertained. For the first time in literature, a general characterization of gas transport through systems at different porosity and pore throat size values and at different rarefaction levels was obtained using a modified Kn definition. The characteristic height required for an accurate Kn of a porous system is defined using the "equivalent diameter" calculated from the corresponding permeabilities. Pore-level calculations were performed in a wide range of systems while the observed permeability variation by porous parameters was successfully described by an extended volume-averaged model developed as a combination of the Darcy, Kozeny-Carman, and Klinkenberg models. The characterization systematic and volume-averaged model was applied for various cases of (i) two-dimensional porous, (ii) two-dimensional multi- porous, and (iii) three-dimensional complex porous system. For all these systems, the permeability values could be estimated in terms of the geometric parameters of the porous structures and rarefaction levels. In addition, the rarefaction effects on heat convection in metal foams were studied through Darcy to Forchheimer flow regimes using the Kelvin Cell structure. A 60% increase in permeability and a substantial decrease in inertial effects developed due to rarefaction, while Nusselt numbers were found mostly related to Reynolds number. Further, the influence of variation in gas thermophysical properties coupled with rarefaction as a function of increasing gas temperature for high heat flux applications was described. A 40% decrease in hydraulic conductivity for a temperature increase from 300K to 400K is observed, independent from the Kn number. en_US
dc.description.abstract Birçok önemli uygulamalarda karşımıza çıkan mikro/nano-ölçek gözenekli sistemlerdeki gaz akışı mevcut geleneksel akışkanlar dinamiği hesaplarından seyrelme etkileri nedeniyle farklılaşmaktadır. Literatürde geçirgenlik üzerindeki seyrelme etkilerinin karakterizasyonunda kullanılan Knudsen sayısı gözenek boyutu cinsinden hesaplanmış, gözenek-boğaz genişliği gibi diğer geometrik parametreler göz ardı edilmiştir. Bu nedenle mikro/nano-ölçek seyrelme etkilerinin doğru bir karakterizasyonu elde edilememiştir. Literatürde ilk kez, faklı gözenek ve gözenek-boğaz genişliğindeki sistemlerde farklı seyrelme seviyelerindeki gaz taşınımın doğru Knudsen tanımı ile genel bir karakterizasyonu elde edilmiştir. Çok farklı akış alanları içeren bir gözenekli sistemin doğru Knudsen sayısını hesaplamak için gerekli karakteristik akış boyutu geçirgenlik kat sayısından hesaplanan bir "eşdeğer çap" tanımı ile sağlanmıştır. Gözenek seviyesi hesaplamaları çok çeşitli sistemlerde uygulanmış ve gözenekli parametrelerle gözlemlenen geçirgenlik değişimi Darcy, Kozeny-Carman ve Klinkenberg modellerinin bir kombinasyonu olarak hacim ortalamalı bir model ile başarıyla tanımlanmıştır. Bu karakterizasyon sistematiği ve geçirgenlik hesaplama modeli (i) iki boyutlu, (ii) çoklu gözenekli ve (iii) üç boyutlu kompleks gözenekli gibi farklı yapılarında uygulanmış ve başarılı sonuçlar elde edilmiştir. Bahsi geçen yapılarda gözenekli sistemin geometrik parametreleri ve seyrelme seviyesi cinsinden geçirgenlik değerleri geliştirilen model ile karakterize edilebilmiştir. Ek olarak konvektif gaz taşınımın seyrelme etkileri Kelvin cell yapısına sahip metal köpükler üzerinde Darcy ile Forchheimer arasındaki rejimlerde hesaplanmıştır. Seyrelme etkileri geçirgenlik kat sayısının 60% artışına ve eylemsizlik etkilerinin azalmasına sebep olurken hesaplanan Nu katsayısının seyrelme etkilerinden bağımsız olarak sadece Reynols sayısı ile ilişkili bulunmuştur. Ayrıca, yüksek ısı akış uygulamaları için gazın termofiziksel özelliklerindeki değişikliğin seyrelme ile birleştiğinde etkisi açıklanmıştır. Kn sayısından bağımsız olarak 300K'dan 400K'ya kadar bir sıcaklık artışı için hidrolik iletkenlikte %40'lık bir azalma gözlemlenmiştir. en_US
dc.format.extent xii, 90 leaves
dc.identifier.uri https://hdl.handle.net/11147/11943
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Gas permeability en_US
dc.subject Rarefaction effect en_US
dc.subject Velocity slip en_US
dc.subject Apparent gas permeability en_US
dc.subject Equivalent Knudsen number en_US
dc.title Numerical Investigation of Gas Transport Through Micro/Nano-scale Porous Media at Slip Flow Regime en_US
dc.title.alternative Kayma Akış Rejiminde Mikro/nano Ölçekli Gözenekli Yapılarda Gaz Taşınımının Sayısal Olarak İncelenmesi en_US
dc.type Doctoral Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Barışık, Murat
gdc.author.institutional Sabet, Safa
gdc.coar.access open access
gdc.coar.type text::thesis::doctoral thesis
gdc.contributor.affiliation Izmir Institute of Technology en_US
gdc.description.department Thesis (Doctoral)--İzmir Institute of Technology, Mechanical Engineering en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication b7a4f8a0-1cd3-4fc2-aa28-d5ccbec7d2e5
relation.isAuthorOfPublication bf1e2f27-0ce5-4928-af8d-e2e8cf937986
relation.isAuthorOfPublication.latestForDiscovery b7a4f8a0-1cd3-4fc2-aa28-d5ccbec7d2e5
relation.isOrgUnitOfPublication 9af2b05f-28ac-4022-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4022-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10435471.pdf
Size:
9.18 MB
Format:
Adobe Portable Document Format
Description:
Doctoral Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: