Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Gender Prediction From Tweets: Improving Neural Representations With Hand-Crafted Features

dc.contributor.author Tekir, Selma
dc.contributor.author Sezerer, Erhan
dc.contributor.author Polatbilek, Ozan
dc.contributor.other 03.04. Department of Computer Engineering
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2019-09-02T13:21:00Z
dc.date.available 2019-09-02T13:21:00Z
dc.date.issued 2019
dc.description.abstract Author profiling is the characterization of an author through some key attributes such as gender, age, and language. In this paper, a RNN model with Attention (RNNwA) is proposed to predict the gender of a twitter user using their tweets. Both word level and tweet level attentions are utilized to learn ’where to look’. This model1 is improved by concatenating LSA-reduced n-gram features with the learned neural representation of a user. Both models are tested on three languages: English, Spanish, Arabic. The improved version of the proposed model (RNNwA + n-gram) achieves state-of-the-art performance on English and has competitive results on Spanish and Arabic. en_US
dc.identifier.citation Tekir, S., Sezerer, E., Polatbilek, O. (2019). Gender prediction from tweets: Improving neural representations with hand-crafted features. Yayın için başvurusu yapılmış metin. en_US
dc.identifier.doi 10.48550/arXiv.1908.09919
dc.identifier.uri https://hdl.handle.net/11147/7251
dc.identifier.uri https://doi.org/10.48550/arXiv.1908.09919
dc.language.iso en en_US
dc.publisher Cornell University en_US
dc.relation.ispartof arXiv en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc/3.0/us/ *
dc.subject RNN Model en_US
dc.subject Datasets en_US
dc.subject Model architecture en_US
dc.subject Neural network-based models en_US
dc.subject Neural representations en_US
dc.title Gender Prediction From Tweets: Improving Neural Representations With Hand-Crafted Features en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-0488-9682
gdc.author.institutional Tekir, Selma
gdc.author.institutional Sezerer, Erhan
gdc.author.institutional Tekir, Selma
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department İzmir Institute of Technology. Computer Engineering en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.identifier.openalex W2970090256
gdc.openalex.normalizedpercentile 0.41
gdc.opencitations.count 0
relation.isAuthorOfPublication 0591b1e2-8f3c-4c2c-9adb-f362df2d5566
relation.isAuthorOfPublication 57639474-3954-4f77-a84c-db8a079648a8
relation.isAuthorOfPublication.latestForDiscovery 0591b1e2-8f3c-4c2c-9adb-f362df2d5566
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4014-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
7251.pdf
Size:
350.33 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: