Strongly Noncosingular Modules

dc.contributor.advisor Büyükaşık, Engin
dc.contributor.author Alagöz, Yusuf
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 04.02. Department of Mathematics
dc.contributor.other 04. Faculty of Science
dc.date.accessioned 2014-11-18T09:36:44Z
dc.date.available 2014-11-18T09:36:44Z
dc.date.issued 2014
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2014 en_US
dc.description Includes bibliographical references (leaves: 38-39) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description vii, 39 leaves en_US
dc.description.abstract The main purpose of this thesis is to investigate the notion of strongly noncosingular modules. We call a right R-module M strongly noncosingular if for every nonzero right R module N and every nonzero homomorphismf : M → N, Im(f) is not a cosingular (or Radsmall) submodule of N in the sense of Harada. It is proven that (1) A right R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective right R-modules coincides with the class of (strongly) noncosingular right R-modules; (3) a right hereditary ring R is Max-ring if and only if absolutely coneat right R-modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective R-modules coincides with the class of strongly noncosingular R-modules. en_US
dc.identifier.uri https://hdl.handle.net/11147/4180
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject R-modules en_US
dc.subject.lcsh Modules (Algebra) en_US
dc.subject.lcsh Rings en_US
dc.title Strongly Noncosingular Modules en_US
dc.title.alternative Güçlü Dual Tekil Olmayan Modüller en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.id
gdc.author.institutional Alagöz, Yusuf
gdc.author.institutional Büyükaşık, Engin
gdc.author.institutional Alagöz, Yusuf
gdc.author.yokid 37080
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Thesis (Master)--İzmir Institute of Technology, Mathematics en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
local.message.claim 2022-09-05T11:59:28.379+0300 *
local.message.claim |rp01503 *
local.message.claim |submit_approve *
local.message.claim |dc_contributor_author *
local.message.claim |None *
relation.isAuthorOfPublication d8547ec2-7454-4000-bc14-a28bd0b1b613
relation.isAuthorOfPublication a9f0b9bb-fe67-4b8e-ae6e-610a439956bf
relation.isAuthorOfPublication.latestForDiscovery d8547ec2-7454-4000-bc14-a28bd0b1b613
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4012-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4005-8abe-a4dfe193da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10018486.pdf
Size:
231.52 KB
Format:
Adobe Portable Document Format
Description:
MasterThesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: