Strongly Noncosingular Modules
dc.contributor.advisor | Büyükaşık, Engin | |
dc.contributor.author | Alagöz, Yusuf | |
dc.contributor.other | 01. Izmir Institute of Technology | |
dc.contributor.other | 04.02. Department of Mathematics | |
dc.contributor.other | 04. Faculty of Science | |
dc.date.accessioned | 2014-11-18T09:36:44Z | |
dc.date.available | 2014-11-18T09:36:44Z | |
dc.date.issued | 2014 | |
dc.description | Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2014 | en_US |
dc.description | Includes bibliographical references (leaves: 38-39) | en_US |
dc.description | Text in English; Abstract: Turkish and English | en_US |
dc.description | vii, 39 leaves | en_US |
dc.description.abstract | The main purpose of this thesis is to investigate the notion of strongly noncosingular modules. We call a right R-module M strongly noncosingular if for every nonzero right R module N and every nonzero homomorphismf : M → N, Im(f) is not a cosingular (or Radsmall) submodule of N in the sense of Harada. It is proven that (1) A right R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective right R-modules coincides with the class of (strongly) noncosingular right R-modules; (3) a right hereditary ring R is Max-ring if and only if absolutely coneat right R-modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective R-modules coincides with the class of strongly noncosingular R-modules. | en_US |
dc.identifier.uri | https://hdl.handle.net/11147/4180 | |
dc.language.iso | en | en_US |
dc.publisher | Izmir Institute of Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | R-modules | en_US |
dc.subject.lcsh | Modules (Algebra) | en_US |
dc.subject.lcsh | Rings | en_US |
dc.title | Strongly Noncosingular Modules | en_US |
dc.title.alternative | Güçlü Dual Tekil Olmayan Modüller | en_US |
dc.type | Master Thesis | en_US |
dspace.entity.type | Publication | |
gdc.author.id | ||
gdc.author.institutional | Alagöz, Yusuf | |
gdc.author.institutional | Büyükaşık, Engin | |
gdc.author.institutional | Alagöz, Yusuf | |
gdc.author.yokid | 37080 | |
gdc.coar.access | open access | |
gdc.coar.type | text::thesis::master thesis | |
gdc.description.department | Thesis (Master)--İzmir Institute of Technology, Mathematics | en_US |
gdc.description.publicationcategory | Tez | en_US |
gdc.description.scopusquality | N/A | |
gdc.description.wosquality | N/A | |
local.message.claim | 2022-09-05T11:59:28.379+0300 | * |
local.message.claim | |rp01503 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
relation.isAuthorOfPublication | d8547ec2-7454-4000-bc14-a28bd0b1b613 | |
relation.isAuthorOfPublication | a9f0b9bb-fe67-4b8e-ae6e-610a439956bf | |
relation.isAuthorOfPublication.latestForDiscovery | d8547ec2-7454-4000-bc14-a28bd0b1b613 | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4003-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4012-8abe-a4dfe192da5e | |
relation.isOrgUnitOfPublication | 9af2b05f-28ac-4005-8abe-a4dfe193da5e | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9af2b05f-28ac-4003-8abe-a4dfe192da5e |