Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Q-Periodicity, Self-Similarity and Weierstrass-Mandelbrot Function

dc.contributor.advisor Pashaev, Oktay
dc.contributor.author Erkuş, Soner
dc.contributor.author Pashaev, Oktay
dc.contributor.other 04.02. Department of Mathematics
dc.contributor.other 04. Faculty of Science
dc.contributor.other 01. Izmir Institute of Technology
dc.date.accessioned 2014-07-22T13:51:47Z
dc.date.available 2014-07-22T13:51:47Z
dc.date.issued 2012
dc.description Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2012 en_US
dc.description Includes bibliographical references (leaves: 92-94) en_US
dc.description Text in English; Abstract: Turkish and English en_US
dc.description viii, 98 leaves en_US
dc.description.abstract In the present thesis we study self-similar objects by method's of the q-calculus. This calculus is based on q-rescaled finite differences and introduces the q-numbers, the qderivative and the q-integral. Main object of consideration is the Weierstrass-Mandelbrot functions, continuous but nowhere differentiable functions. We consider these functions in connection with the q-periodic functions. We show that any q-periodic function is connected with standard periodic functions by the logarithmic scale, so that q-periodicity becomes the standard periodicity. We introduce self-similarity in terms of homogeneous functions and study properties of these functions with some applications. Then we introduce the dimension of self-similar objects as fractals in terms of scaling transformation. We show that q-calculus is proper mathematical tools to study the self-similarity. By using asymptotic formulas and expansions we apply our method to Weierstrass-Mandelbrot function, convergency of this function and relation with chirp decomposition. en_US
dc.identifier.uri http://hdl.handle.net/11147/3552
dc.language.iso en en_US
dc.publisher Izmir Institute of Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject.lcsh Fourier transformations en
dc.subject.lcsh Mandelbrot sets en
dc.subject.lcsh Fractals en
dc.subject.lcsh Mellin transform en
dc.title Q-Periodicity, Self-Similarity and Weierstrass-Mandelbrot Function en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
gdc.author.institutional Erkuş, Soner
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Thesis (Master)--İzmir Institute of Technology, Mathematics en_US
gdc.description.publicationcategory Tez en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
relation.isAuthorOfPublication c8c9d459-e974-479c-b4bf-7d945d084063
relation.isAuthorOfPublication.latestForDiscovery c8c9d459-e974-479c-b4bf-7d945d084063
relation.isOrgUnitOfPublication 9af2b05f-28ac-4012-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4005-8abe-a4dfe193da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4012-8abe-a4dfe192da5e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
T001084.pdf
Size:
774.27 KB
Format:
Adobe Portable Document Format
Description:
MasterThesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: