Please use this identifier to cite or link to this item:
Title: Nanoscale curved dielectric film characterization beyond diffraction limits using spatially structured illumination
Authors: Ataç, Enes
Dinleyici, Mehmet Salih
Keywords: Diffraction limit
Phase diffraction
Structured illumination
Sub-wavelength dielectric films
Issue Date: 2020
Publisher: Academic Press
Abstract: Optical fiber based sensor systems often utilize thin dielectric films coated on non-planar surfaces are needed to be inspected for quality assurance. However, non-destructive optical characterization of these films is not a simple method especially on curved large surfaces. In this study, we propose a real time procedure to estimate the optical properties of sub-wavelength transparent dielectric films coated on optical fibers. The paper includes developing a mathematical model and its experimental verification. The near field phase diffraction method is combined with the structured light illumination that is spatial modes of optical fibers to estimate the thickness of the phase object beyond the classical diffraction limits. Numerical simulations and experimental results show that the film thickness can safely be characterized up to one tenth of wavelength of interest via selective spatial field distribution determined according to the morphology of the thin film. The outcomes have good agreements with destructive Scanning Electron Microscope (SEM) measurements. © 2020 Elsevier Inc.
ISSN: 1095-9912
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S1068520020302571-main.pdf3.04 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Dec 24, 2022

Page view(s)

checked on Jan 23, 2023


checked on Jan 23, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.