Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/10224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorDemir, Özlem-
dc.contributor.authorDiril, Müge-
dc.date.accessioned2021-01-24T18:33:05Z-
dc.date.available2021-01-24T18:33:05Z-
dc.date.issued2021-
dc.identifier.issn0092-7872-
dc.identifier.urihttps://doi.org/10.1080/00927872.2020.1821207-
dc.identifier.urihttps://hdl.handle.net/11147/10224-
dc.description.abstractRecently, in a series of papers “simple” versions of direct-injective and direct-projective modules have been investigated. These modules are termed as “simple-direct-injective” and “simple-direct-projective,” respectively. In this paper, we give a complete characterization of the aforementioned modules over the ring of integers and over semilocal rings. The ring is semilocal if and only if every right module with zero Jacobson radical is simple-direct-projective. The rings whose simple-direct-injective right modules are simple-direct-projective are fully characterized. These are exactly the left perfect right H-rings. The rings whose simple-direct-projective right modules are simple-direct-injective are right max-rings. For a commutative Noetherian ring, we prove that simple-direct-projective modules are simple-direct-injective if and only if simple-direct-injective modules are simple-direct-projective if and only if the ring is Artinian. Various closure properties and some classes of modules that are simple-direct-injective (resp. projective) are given. © 2020 Taylor & Francis Group, LLC.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofCommunications in Algebraen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtinian ringsen_US
dc.subjectH-ringsen_US
dc.subjectPerfect ringsen_US
dc.subjectTorsion submoduleen_US
dc.titleOn simple-direct modulesen_US
dc.typeArticleen_US
dc.institutionauthorBüyükaşık, Engin-
dc.institutionauthorDemir, Özlem-
dc.institutionauthorDiril, Müge-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000613883400001en_US
dc.identifier.scopus2-s2.0-85096543843en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/00927872.2020.1821207-
dc.relation.doi10.1080/00927872.2020.1821207en_US
dc.coverage.doi10.1080/00927872.2020.1821207en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
00927872.2020.pdf1.32 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 6, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 16, 2024

Page view(s)

278
checked on Dec 9, 2024

Download(s)

100
checked on Dec 9, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.