Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/10257
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemiray, Levent-
dc.contributor.authorÖzçivici, Engin-
dc.date.accessioned2021-01-24T18:33:20Z-
dc.date.available2021-01-24T18:33:20Z-
dc.date.issued2015-
dc.identifier.issn1300-0152-
dc.identifier.issn1303-6092-
dc.identifier.urihttps://doi.org/10.3906/biy-1404-35-
dc.identifier.urihttps://hdl.handle.net/10257-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/214435-
dc.description.abstractApplication of mechanical vibrations is anabolic to bone tissue, not only by guiding mature bone cells to increased formation, but also by increasing the osteogenic commitment of progenitor cells. However, the sensitivity and adaptive response of bone marrow stem cells to this loading regimen has not yet been identified. In this study, we subjected mouse bone marrow stem cell line D1-ORL-UVA to daily mechanical vibrations (0.15 g, 90 Hz, 15 min/day) for 7 days, both during quiescence and osteogenic commitment, to identify corresponding ultrastructural adaptations on cellular and molecular levels. During quiescence, mechanical vibrations significantly increased total actin content and actin fiber thickness, as measured by phalloidin staining and fluorescent microscopy. Cellular height also increased, as measured by atomic force microscopy, along with the expression of focal adhesion kinase (PTK2) mRNA levels. During osteogenesis, mechanical vibrations increased the total actin content, actin fiber thickness, and cytoplasmic membrane roughness, with significant increase in Runx2 mRNA levels. These results show that bone marrow stem cells demonstrate similar cytoskeletal adaptations to low-magnitude high-frequency mechanical loads both during quiescence and osteogenesis, potentially becoming more sensitive to additional loads by increased structural stiffness.en_US
dc.language.isoenen_US
dc.publisherTUBITAKen_US
dc.relation.ispartofTurkish Journal of Biologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMesenchymal stem cellsen_US
dc.subjectMechanical signalsen_US
dc.subjectOsteogenic commitmenten_US
dc.subjectCytoskeletonen_US
dc.titleBone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and osteogenesisen_US
dc.typeArticleen_US
dc.institutionauthorDemiray, Levent-
dc.institutionauthorÖzçivici, Engin-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume39en_US
dc.identifier.issue1en_US
dc.identifier.startpage88en_US
dc.identifier.endpage97en_US
dc.identifier.wosWOS:000346847200010en_US
dc.identifier.scopus2-s2.0-84919681607en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid214435en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.dept03.01. Department of Bioengineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
biy-39-1-10-1404-35.pdf1.48 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

27
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

26
checked on Mar 27, 2024

Page view(s)

618
checked on Apr 22, 2024

Download(s)

156
checked on Apr 22, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.