Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/10370
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Özcan, Caner | - |
dc.contributor.author | Ersoy, Okan | - |
dc.contributor.author | Oğul, İskender Ülgen | - |
dc.date.accessioned | 2021-01-24T18:34:16Z | - |
dc.date.available | 2021-01-24T18:34:16Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 1300-0632 | - |
dc.identifier.issn | 1300-0632 | - |
dc.identifier.uri | https://doi.org/10.3906/elk-1904-7 | - |
dc.identifier.uri | https://hdl.handle.net/11147/10370 | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/334578 | - |
dc.description.abstract | Classification of a synthetic aperture radar (SAR) image is an essential process for SAR image analysis and interpretation. Recent advances in imaging technologies have allowed data sizes to grow, and a large number of applications in many areas have been generated. However, analysis of high-resolution SAR images, such as classification, is a time-consuming process and high-speed algorithms are needed. In this study, classification of high-speed denoised SAR image patches by using Apache Spark clustering framework is presented. Spark is preferred due to its powerful open-source cluster-computing framework with fast, easy-to-use, and in-memory analytics. Classification of SAR images is realized on patch level by using the supervised learning algorithms embedded in the Spark machine learning library. The feature vectors used as the classifier input are obtained using gray-level cooccurrence matrix which is chosen to quantitatively evaluate textural parameters and representations. SAR image patches used to construct the feature vectors are first applied to the noise reduction algorithm to obtain a more accurate classification accuracy. Experimental studies were carried out using naive Bayes, decision tree, and random forest algorithms to provide comparative results, and significant accuracies were achieved. The results were also compared with a state-of-the-art deep learning method. TerraSAR-X images of high-resolution real-world SAR images were used as data. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Türkiye Klinikleri Journal of Medical Sciences | en_US |
dc.relation.ispartof | Turkish Journal of Electrical Engineering and Computer Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Random forests | en_US |
dc.subject | Custer computing | en_US |
dc.subject | Synthetic aperture radar | en_US |
dc.subject | Machine learning | en_US |
dc.title | Fast texture classification of denoised SAR image patches using GLCM on Spark | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Oğul, İskender Ülgen | - |
dc.department | İzmir Institute of Technology. Electrical and Electronics Engineering | en_US |
dc.identifier.volume | 28 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 182 - 195 | en_US |
dc.identifier.wos | WOS:000510459900013 | en_US |
dc.identifier.scopus | 2-s2.0-85079842229 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.3906/elk-1904-7 | - |
dc.relation.doi | 10.3906/elk-1904-7 | en_US |
dc.coverage.doi | 10.3906/elk-1904-7 | en_US |
dc.identifier.trdizinid | 334578 | en_US |
dc.identifier.wosquality | Q4 | - |
dc.identifier.scopusquality | Q3 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | open | - |
crisitem.author.dept | 01. Izmir Institute of Technology | - |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
fe733cd0-55e5-45c2-b718-26d28ba837af.pdf | 48.03 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
6
checked on Nov 29, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 23, 2024
Page view(s)
232
checked on Dec 2, 2024
Download(s)
112
checked on Dec 2, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.