Please use this identifier to cite or link to this item:
Title: Electromagnetic effects of equatorially misaligned RF cavities
Authors: Karatay, Anıl
Yaman, Fatih
Keywords: Radiofrequency cavities
Radiation hardened magnets
Permanent magnet devices
Accelerator cavities
High energy physics
Issue Date: 2021
Publisher: IOP Publishing
Abstract: One of the most challenging problems in modern particle accelerator systems is the manufacture of RF cavities within the desired tolerance limits. In this study experimental and computational investigations to quantify the effects of transversal half-cell misalignments on the fundamental accelerator cavity parameters and beam dynamics are presented. Equivalent circuit components of an equatorially misaligned single-cell aluminum elliptical cavity are obtained from the measured data and are employed to calculate longitudinal impedance and modal wake function. Critical coupling and bead-pull measurements are performed at the TM010-like mode frequency, 2.45 GHz for the quality factor and shunt impedance of the high-beta cavity. We report equivalent circuit analysis for higher-order modes and variations of the equivalent circuit components with respect to considered misalignment errors for the MICE experiment's muon cooling cavity. It is shown that using the equivalent circuit model decreases the computational load significantly for the wake field simulations of resonator cavities. Good agreement between simulations and measurements in terms of accelerating cavity parameters and impedances is illustrated.
ISSN: 1748-0221
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
  Until 2025-01-01
2.16 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Feb 10, 2024

Page view(s)

checked on Feb 26, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.