Please use this identifier to cite or link to this item:
Title: Fabrication and in vitro evaluation of thermally cross-linked gelatin nanofibers for drug delivery applications
Authors: Mete, Derya
Göktaş, Gözde
Şanlı Mohamed, Gülşah
Keywords: Electrospinning
Drug delivery systems
Thermal crosslinking
Issue Date: 2022
Publisher: Taylor & Francis
Abstract: In this study, four different nanofibers consisting of gelatin (Gel), doxorubicin (DOX) with gel (DOX@Gel), a composite of gel with poly(ethylene glycol) (PEGylated-gel), and DOX@PEGylated-gel were fabricated. Subsequently, the nanofibers were thermally cross-linked in order to offer a stable and biocompatible alternative for the biological applications of nanofibers such as drug delivery and tissue engineering. Nanofibers were characterized by scanning electron microscopy, Fourier Transform-Infrared Spectroscopy (FT-IR), and confocal microscopy. The formation of smooth, continuous, and uniform nanofibers was observed and the addition of PEG resulted in an increase whereas the incorporation of DOX into nanofibers had no significant change in the diameter of nanofibers. Crosslinking also enlarged the diameter of all nanofibers and the most dramatic increase was observed 53% by DOX@PEGylated-gel. Afterward, the biological performance of the nanofibers was investigated by drug release profile, cytotoxicity on A549 cell line as well as antimicrobial activity with E. coli and S. aureus. The results indicate an enhanced drug release profile, moderate antimicrobial activity, and reasonable cytotoxic efficiency for thermally cross-linked nanofibers compared to uncross-linked nanofibers.
ISSN: 1082-6068
Appears in Collections:Chemistry / Kimya
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Fabrication.pdf2.01 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Jan 30, 2023


checked on Jan 30, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.