Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11684
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKaraçalı, Bilgeen_US
dc.contributor.authorÇakı, Onuren_US
dc.date.accessioned2021-11-17T13:20:15Z-
dc.date.available2021-11-17T13:20:15Z-
dc.date.issued2021-07en_US
dc.identifier.citationÇakı, O. (2021). Quasi-supervised strategies for compound-protein interaction prediction. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkeyen_US
dc.identifier.urihttps://hdl.handle.net/11147/11684-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2021en_US
dc.descriptionIncludes bibliographical references (leaves: 54-59)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.description.abstractIn-silico prediction of compound-protein interaction using computational methods preserves its importance in various pharmacology applications because the wet-lab experiments are time-consuming, laborious and costly. Most machine learning methods proposed to that end approach this problem with supervised learning strategies in which known interactions are labeled as positive and the rest are labeled as negative. However, treating all unknown interactions as negative instances may lead to inaccuracies in real practice since some of the unknown interactions are bound to be positive interactions waiting to be identified as such. In this study, we propose to address this problem using the Quasi-Supervised Learning algorithm. In this framework, potential interactions are predicted by estimating the overlap between two datasets: a true positive dataset which consists of compound-protein pairs with known interactions and an unknown dataset which consists of all the remaining compound-protein pairs. The potential interactions are then identified as those in the unknown dataset that overlap with the interacting pairs in the true positive dataset in terms of the associated similarity structure between interacting pairs. Experimental results on GPCR and Nuclear Receptor datasets show that the proposed method can identify actual interactions from all possible combinations.en_US
dc.description.abstractLaboratuvar ortamında gerçekleştirilen bileşik-protein etkileşimi belirleme deneylerinin zaman alıcı, zahmetli ve maliyetli olması nedeniyle, hesaplamalı yöntemler kullanarak dijital ortamda bileşik-protein etkileşimi tahmini önemini korumaktadır. Bu amaçla geliştirilen pek çok yapay öğrenme yöntemi bu probleme bilinen etkileşimlerin pozitif, eldeki geri kalan bütün etkileşimlerin ise negatif olarak etiketlendiği güdümlü öğrenme stratejileri ile yaklaşmıştır. Fakat bilinmeyen etkileşimler açığa çıkarılmayı bekleyen pozitif etkileşimleri de barındıracağından, bilinmeyen bütün etkileşimleri negatif örnek olarak ele almak gerçek uygulamalarda hatalı sonuçlara yol açacaktır. Bu çalışmada, bu problemin Yarı-Güdümlü Öğrenme Algoritması ile çözülmesi amaçlanmaktadır. Bu çerçevede olası etkileşimler iki veri kümesinin örtüşümü kestirilerek tahmin edilir: Etkileştikleri bilinen bileşik-protein çiftlerinden oluşan gerçek pozitif veri kümesi ve geri kalan diğer bütün bileşik-protein çiftlerinden oluşan bilinmeyen veri kümesi. Gerçek pozitif veri kümesindeki etkileşen çiftlerle ilgili yapısal benzerlik açısından örtüşen bilinmeyen veri kümesindeki bileşik-protein çiftleri potansiyel etkileşimler olarak tanımlanır. GPCR ve Nuclear Receptor veri kümeleri üzerindeki deneysel sonuçlar, amaçlanan yöntemin bütün olası çiftlerden gerçek etkileşimleri saptayabildiğini göstermektedir.en_US
dc.format.extentviii, 59 leavesen_US
dc.language.isoenen_US
dc.publisher01. Izmir Institute of Technologyen_US
dc.relation.urihttps://hdl.handle.net/11147/11861-
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBioinformaticsen_US
dc.subjectCheminformaticsen_US
dc.subjectMachine learningen_US
dc.subjectQuasi-supervised learningen_US
dc.titleQuasi-supervised strategies for compound-protein interaction prediction [Master Thesis]en_US
dc.title.alternativeBileşik-protein etkileşimi tahmini için yarı-güdümlü yaklaşımlar [Master Thesis]en_US
dc.typeMaster Thesisen_US
dc.authorid0000-0002-5068-1356en_US
dc.departmentThesis (Master)--İzmir Institute of Technology, Electrical and Electronics Engineeringen_US
dc.relation.publicationcategoryTezen_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
item.languageiso639-1en-
item.fulltextWith Fulltext-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
10410010.pdfMaster Thesis2 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

208
checked on Apr 15, 2024

Download(s)

412
checked on Apr 15, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.