Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11830
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFinkelstein-Shapiro, Daniel-
dc.contributor.authorMante, Pierre-Adrien-
dc.contributor.authorSarısözen, Sema-
dc.contributor.authorWittenbecher, Lukas-
dc.contributor.authorMinda, Iulia-
dc.contributor.authorBalcı, Sinan-
dc.contributor.authorPullerits, Tonu-
dc.date.accessioned2021-12-02T18:16:17Z-
dc.date.available2021-12-02T18:16:17Z-
dc.date.issued2021-
dc.identifier.issn2451-9294-
dc.identifier.urihttps://doi.org/10.1016/j.chempr.2021.02.028-
dc.identifier.urihttps://hdl.handle.net/11147/11830-
dc.description.abstractMolecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of polaritonic light-matter states, called plexcitons. Such systems are tunable, scalable, easy to synthesize, and offer sub-wavelength confinement, all while giving access to the ultrastrong light-matter coupling regime, promising a plethora of applications. However, the complexity of these materials prevented the understanding of their excitation and relaxation phenomena. Here, we follow the relaxation pathways in plexcitons and conclude that while the metal destroys the optical coherence, the molecular aggregate coupled to surface processes significantly contributes to the energy dissipation. We use two-dimensional electronic spectroscopy with theoretical modeling to assign the different relaxation processes to either molecules or metal nanoparticle. We show that the dynamics beyond a few femtoseconds has to be considered in the language of hot electron distributions instead of the accepted lower and upper polariton branches and establish the framework for further understanding.en_US
dc.description.sponsorshipFunding is acknowledged from the European Union through the Marie Sklodowska-Curie Grant Agreement no. 702694, from Nanolund and from Swedish Research Council grants 2017-05150, 2017-04344, and 2018-05090. We also acknowledge stimulating discussions with Patrick Potts.en_US
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.relation.ispartofChemen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCavity quantum electrodynamicsen_US
dc.subjectExcitation energy dissipation-
dc.subjectMolecular aggregates-
dc.titleUnderstanding radiative transitions and relaxation pathways in plexcitonsen_US
dc.typeArticleen_US
dc.authorid0000-0003-1202-3157-
dc.institutionauthorSarısözen, Sema-
dc.institutionauthorBalcı, Sinan-
dc.departmentİzmir Institute of Technology. Chemistryen_US
dc.departmentİzmir Institute of Technology. Photonics-
dc.identifier.volume7en_US
dc.identifier.issue4en_US
dc.identifier.startpage1092en_US
dc.identifier.endpage1107en_US
dc.identifier.wosWOS:000652330200022en_US
dc.identifier.scopus2-s2.0-85104061301en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.chempr.2021.02.028-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept04.04. Department of Photonics-
Appears in Collections:Chemistry / Kimya
Photonics / Fotonik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S2451929421001091-main.pdf2.43 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

24
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

24
checked on Mar 30, 2024

Page view(s)

49,144
checked on Apr 15, 2024

Download(s)

186
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.