Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKorkut, Sıla Övgü-
dc.contributor.authorİmamoğlu Karabaş, Neslişah-
dc.date.accessioned2021-12-29T13:46:22Z-
dc.date.available2021-12-29T13:46:22Z-
dc.date.issued2022-02-
dc.identifier.issn1028-6276-
dc.identifier.urihttps://doi.org/10.1007/s40995-021-01235-9-
dc.identifier.urihttps://hdl.handle.net/11147/11892-
dc.description.abstractThis study aims to propose a reliable, accurate, and efficient numerical approximation for a general compelling partial differential equation including nonlinearity (uδ∂u∂x), dissipation (∂2u∂x2), and dispersion (∂3u∂x3) which arises in many fields of engineering as well as applied sciences. The novel proposed method has been developed combining a kind of mesh-free method called the Taylor wavelet method with the Euler method. The convergence result of the method has been presented theoretically. Moreover, the validation and applicability of the method have been also confirmed computationally on benchmark problems such as KdV–Burgers’ equation and modified-KdV equation. The numerical results have been compared both to the exact solution and to those in the existing literature. All presented figures and tables guarantee that the proposed method is highly accurate, efficient, and compatible with the nature of the specified equation physically. Furthermore, the recorded errors are evidence that the proposed method is the best approximation compared to those in the existing methods.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofIranian Journal of Science and Technology, Transaction A: Scienceen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectKdV–Burgers’ equationen_US
dc.subjectModified-KdV equationen_US
dc.subjectNonlinearityen_US
dc.subjectTaylor waveleten_US
dc.titleA Reliable Explicit Method To Approximate the General Type of the Kdv–burgers’ Equationen_US
dc.typeArticleen_US
dc.authorid0000-0002-3306-8656-
dc.institutionauthorİmamoğlu Karabaş, Neslişah-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.wosWOS:000718222100002-
dc.identifier.scopus2-s2.0-85119302465-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s40995-021-01235-9-
dc.contributor.affiliationİzmir Katip Çelebi Üniversitesien_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.relation.issn1028-6276en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
11892.pdfArticle (Makale)447.64 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on May 2, 2025

WEB OF SCIENCETM
Citations

1
checked on May 2, 2025

Page view(s)

54,968
checked on May 5, 2025

Download(s)

786
checked on May 5, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.