Please use this identifier to cite or link to this item:
Title: Mechanistic insights into the effect of sulfur on the selectivity of cobalt-catalyzed Fischer–Tropsch Synthesis: A DFT study
Authors: Dağa, Yağmur
Kızılkaya, Ali Can
01. Izmir Institute of Technology
01. Izmir Institute of Technology
Keywords: Cobalt
Density functional theory
Fischer–Tropsch synthesis
Issue Date: Apr-2022
Publisher: MDPI
Abstract: Sulfur is a common poison for cobalt-catalyzed Fischer–Tropsch Synthesis (FTS). Alt-hough its effects on catalytic activity are well documented, its effects on selectivity are controversial. Here, we investigated the effects of sulfur-covered cobalt surfaces on the selectivity of FTS using density functional theory (DFT) calculations. Our results indicated that sulfur on the surface of Co(111) resulted in a significant decrease in the adsorption energies of CO, HCO and acetylene, while the binding of H and CH species were not significantly affected. These findings indicate that sulfur increased the surface H/CO coverage ratio while inhibiting the adsorption of carbon chains. The elementary reactions of H-assisted CO dissociation, carbon and oxygen hydrogenation and CH coupling were also investigated on both clean and sulfur-covered Co(111). The results indicated that sulfur decreased the activation barriers for carbon and oxygen hydrogenation, while increasing the barriers for CO dissociation and CH coupling. Combining the results on elementary reactions with the modification of adsorption energies, we concluded that the intrinsic effect of sulfur on the selectivity of cobalt-catalyzed FTS is to increase the selectivity to methane and saturated short-chain hy-drocarbons, while decreasing the selectivity to olefins and long-chain hydrocarbons.
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
catalysts-12-00425-v3.pdfArticle3.04 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Feb 10, 2024

Page view(s)

checked on Feb 19, 2024


checked on Feb 19, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.