Please use this identifier to cite or link to this item:
Title: Flat sheet metakaolin ceramic membrane for water desalination via direct contact membrane distillation
Authors: Zewdie, Tsegahun Mekonnen
Habtu, Nigus Gabbiye
Dutta, Abhishek
Van der Bruggen, Bart
Bahir Dar University
Bahir Dar University
Izmir Institute of Technology
Katholieke Universiteit Leuven
Keywords: Desalination
Flat sheet membrane
Issue Date: Mar-2022
Publisher: IWA Publishing
Abstract: Hydrophobic metakaolin-based flat sheet membrane was developed via phase inversion and sintering technique and modified through 1H,1H,2H,2H-perfluorooctyltriethoxysilane grafting agents. The prepared membrane was characterized by different techniques such as XRD, FTIR, SEM, contact angle, porosity, and mechanical strength. Their results indicated that the wettability, structural, and mechanical properties of the prepared membrane confirm the suitability of the material for membrane distillation (MD) application. The prepared metakaolin-based flat sheet membrane acquired hydrophobic properties after surface modification with the water contact angle values of 113.2° to 143.3°. Afterward, the membrane performance was tested for different sodium chloride aqueous solutions (synthetic seawater) and various operating parameters (feed temperature, feed flow rate) using direct contact membrane distillation (DCMD). Based on the findings, the prepared membrane at metakaolin loading of 45 wt.% and sintered at 1,300 °C was achieved the best performance with >95% salt rejection and permeate flux of 6.58 + 0.3 L/m2 · h at feed temperature of 80 °C, feed concentration of 35 g/L, and feed flow rate of 60 L/h. It can be con-cluded that further optimization of membrane porosity, mechanical, and surface properties is required to maximize the permeate flux and salt rejection.
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
jwrd0120131.pdfArticle1.28 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Feb 26, 2024


checked on Feb 26, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.