Please use this identifier to cite or link to this item:
Title: Effects of alkaline earth metal additives on methylammonium-free lead halide perovskite thin films and solar cells
Authors: Yüce, Hürriyet
LaFollette, Diana K.
Demir, Mustafa Muammer
Perini, Carlo A.R.
Correa-Baena, Juan-Pablo
Keywords: Solar cells
High performance
Photoelectric conversion efficiencies
UV solidification
Publisher: Wiley
Abstract: Organic–inorganic lead halide perovskite solar cells are regarded as one of the most promising technologies for the next generation of photovoltaics due to their high power conversion efficiency (PCE) and simple solution manufacturing. Among the different compositions, the formamidinium lead iodide (FAPbI3) photoactive phase has a bandgap of 1.4 eV, which enables the corresponding higher PCEs according to the Shockley–Queisser limit. However, the photoactive crystal phase of FAPbI3 is not stable at room temperature. The most high-performing compositions to date have reduced this problem by incorporating the methylammonium (MA) cation into the FAPbI3 composition, although MA has poor stability at high temperatures and in humid environments, which can limit the lifetime of FAxMA1−xPbI3 films. CsxFA1−xPbI3 perovskites are also explored, but despite better stability they still lag in performance. Herein, the additive engineering of MA-free organic−inorganic lead halide perovskites using divalent cations Sr2+ and Ca2+to enhance the performances of CsxFA1−xPbI3 perovskite compositions is explored. It is revealed that the addition of up to 0.5% of Sr2+ and Ca2+ leads to improvements in morphology and reduction in microstrain. The structural improvements observed correlate with improved solar cell performances at low additive concentrations.
Description: National Science Foundation (NSF) (ECCS-1542174) and (DGE-2039655)
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
Solar RRL-2022-Yuce.pdf
  Until 2025-07-01
Article3.32 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Jul 12, 2024


checked on Jul 13, 2024

Page view(s)

checked on Jul 1, 2024


checked on Jul 1, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.