Please use this identifier to cite or link to this item:
Title: Exact time-evolution of a generalized two-dimensional quantum parametric oscillator in the presence of time-variable magnetic and electric fields
Authors: Atılgan Büyükaşık, Şirin
Çayiç, Zehra
Keywords: Dependent harmonic-oscillator
Coherent states
Publisher: American Institute of Physics
Abstract: The time-dependent Schrodinger equation describing a generalized two-dimensional quantum parametric oscillator in the presence of time-variable external fields is solved using the evolution operator method. For this, the evolution operator is found as a product of exponential operators through the Wei-Norman Lie algebraic approach. Then, the propagator and time-evolution of eigenstates and coherent states are derived explicitly in terms of solutions to the corresponding system of coupled classical equations of motion. In addition, using the evolution operator formalism, we construct linear and quadratic quantum dynamical invariants that provide connection of the present results with those obtained via the Malkin-Man'ko-Trifonov and the Lewis-Riesenfeld approaches. Finally, as an exactly solvable model, we introduce a Cauchy-Euler type quantum oscillator with increasing mass and decreasing frequency in time-dependent magnetic and electric fields. Based on the explicit results for the uncertainties and expectations, squeezing properties of the wave packets and their trajectories in the two-dimensional configuration space are discussed according to the influence of the time-variable parameters and external fields. Published under an exclusive license by AIP Publishing.
ISSN: 0022-2488
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
12297.pdfArticle7.5 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Jul 15, 2024


checked on Jul 15, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.