Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12484
Title: An in vivo zebrafish model reveals circulating tumor cell targeting capacity of serum albumin nanoparticles
Authors: Çakan Akdoğan, Gülçin
Ersöz, Esra
Sözer, Sümeyra Çiğdem
Gelinci, Emine
Keywords: Circulating tumor cells
Drug delivery
Serum albumin nanoparticles
Xenograft
Zebrafish
Publisher: Elsevier
Abstract: Nanoparticles are promising tools of drug delivery in modern medicine. There is a need for fast and reliable models for in vivo validation of newly developed nanocarriers. Here, we report a fast and easy zebrafish larval model to study the biodistribution and cancer cell targeting capacity of serum albumin nanoparticles in vivo. Fluorescently tagged Bovine Serum Albumin Nanoparticles (BSA-NPs) delivered intravenously to the zebrafish larvae, can be used to study the biodistribution via live imaging. We showed that the BSA-NPs were instantly distributed to the larval vasculature including the brain, without causing any toxicity. The clearance of nanoparticles from the body occurred within few days, which gives sufficient time to study anti-cancer efficiency of the BSA-NPs. Next, we asked whether the BSA-NPs can target the cancer cells in circulation. We established a circulating tumor cell (CTC) xenograft model and described a quantitative method for colocalization and cancer cell death analysis in the intact live organism. We showed that BSA-NPs effectively found and localized to MCF7 cells in vasculature which were killed upon doxorubicin delivery. Interestingly, folic acid coating of BSA-NPs caused faster colocalization but did not increase the overall cell death. This is the first report of the biodistribution, toxicity and anti-cancer effectiveness of serum albumin-based nanoparticles in the zebrafish model. Moreover, here we report for the first time that BSA-NPs are able to target the CTCs in an in vivo model. The zebrafish CTC model and the analysis protocol reported here can be used to assess CTC targeting capacity of nanoparticles and devise patient specific CTC targeting tests.
Description: This study was funded by Izmir Biomedicine and Genome Center (IBG) start-up fund.
URI: https://doi.org/10.1016/j.jddst.2022.103658
https://hdl.handle.net/11147/12484
ISSN: 1773-2247
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
1-s2.0-S177322472200569X-main.pdf
  Until 2025-01-01
Article (Makale)8.43 MBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Sep 13, 2024

WEB OF SCIENCETM
Citations

2
checked on Sep 14, 2024

Page view(s)

156
checked on Sep 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.