Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12545
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkyuz, Yavuz Batuhan-
dc.contributor.authorGumustekin, Sevket-
dc.date.accessioned2022-10-18T12:19:08Z-
dc.date.available2022-10-18T12:19:08Z-
dc.date.issued2022-
dc.identifier.isbn9781665450928-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864843-
dc.description.abstractIn this work, artificial intelligence reinterpretation and/or addition of drum parts for musical pieces supplied in Musical Instruments Digital Interface (MIDI) format, have been carried out. To achieve this, Sequence-to-Sequence learning method and Encoder-Decoder Long Short-Term Memory (LSTM) artificial neural network model have been used. In order to improve training of this neural network, teacher forcing method was utilized. In the generation of new drum parts, the quality and the originality of the samples were improved by using temperature sampling. Our proposed method produces high quality drum accompaniments with adjustable complexity.en_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof30th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2022 -- Safranbolu, TURKEYen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference-
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMidien_US
dc.subjectSequence-To-Sequenceen_US
dc.subjectEncoder And Decoderen_US
dc.subjectLong-Short Term Memoryen_US
dc.subjectTeacher Forcingen_US
dc.subjectTemperature Samplingen_US
dc.subjectAutonomous Music Accompanyen_US
dc.titleDiziden Diziye Modeli ve MIDI Müzik Veri Tabanı Kullanımıyla Gerçekçi Bir Davul Eşliği Üretecien_US
dc.title.alternativeA Realistic Drum Accompaniment Generator Using Sequence-To Model and Midi Music Databaseen_US
dc.typeConference Objecten_US
dc.authorid0000-0002-0048-2260-
dc.authorid0000-0001-9697-1394-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.wosWOS:001307163400182-
dc.identifier.scopus2-s2.0-85138708590-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.relation.publication2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.identifier.doi10.1109/SIU55565.2022.9864843-
dc.relation.isbn978-166545092-8en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.languageiso639-1tr-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
A_Realistic_Drum.pdfConference Paper977.45 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on May 16, 2025

Page view(s)

488
checked on Jun 10, 2025

Download(s)

302
checked on Jun 10, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.