Please use this identifier to cite or link to this item:
Title: Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at root s=13 TeV
Authors: Karapınar, Güler
CMS Collaboration
Keywords: CMS
Issue Date: 2022
Publisher: Elsevier
Abstract: A search is reported for high-mass hadronic resonances that decay to a parton and a Lorentz-boosted resonance, which in turn decays into a pair of partons. The search is based on data collected with the CMS detector at the LHC in proton-proton collisions at root s = 13 TeV, corresponding to an integrated luminosity of 138 fb(-1). The boosted resonance is reconstructed as a single wide jet with substructure consistent with a two-body decay. The high-mass resonance is thus considered as a dijet system. The jet substructure information and the kinematic properties of cascade resonance decays are exploited to disentangle the signal from the large quantum chromodynamics multijet background. The dijet mass spectrum is analyzed for the presence of new high-mass resonances, and is found to be consistent with the standard model background predictions. Results are interpreted in a warped extra dimension model where the high-mass resonance is a Kaluza-Klein gluon, the boosted resonance is a radion, and the final state partons are all gluons. Limits on the production cross section are set as a function of the Kaluza-Klein gluon and radion masses. These limits exclude at 95% confidence level models with Kaluza-Klein gluon masses in the range 2.0 to 4.3 TeV and radion masses in the range 0.20 to 0.74TeV. By exploring a novel experimental signature, the observed limits on the Kaluza-Klein gluon mass are extended by up to about 1 TeV compared to previous searches. (C) 2022 The Author(s). Published by Elsevier B.V.
ISSN: 0370-2693
Appears in Collections:Rectorate / Rektörlük
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Feb 16, 2024


checked on Jan 27, 2024

Page view(s)

checked on Feb 26, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.