Please use this identifier to cite or link to this item:
Title: The effect of geometrical characteristics of TiO2 nanotube arrays on the photocatalytic degradation of organic pollutants
Authors: Kartal, Uğur
Uzunbayır, Begüm
Doluel, Eyyüp Can
Yurddaşkal, Metin
Erol, Mustafa
Keywords: Titanium dioxide
Electrochemical anodization
Geometrical characteristics
Issue Date: 2023
Publisher: Springer
Abstract: Highly ordered TiO2 nanotube arrays (TNAs) were fabricated by electrochemical anodization under varying durations and voltages. The effects of the anodizing parameters on geometrical properties were investigated. The results showed that as the anodizing time increased from 15 to 45 min, the length of the nanotubes increased, but there was no change in their diameter, hence the surface area increased while the open porosity did not change. When the effect of the anodizing voltage was examined, it was observed that both the length and diameter increased as the voltage increased from 15 to 45 V. Thus, a significant increase in open porosity and surface area was observed. The UV-Vis spectrophotometer was used to evaluate the effects of all geometrical characteristics on the photodegradation of methylene blue (MB). The results showed that the anodizing parameters were highly effective on the photocatalytic degradation of MB. With the decrease of the anodizing voltage, the photocatalytic activity increased because of the geometrical characteristics of TNAs. Accordingly, TNAs with the surface area of 25 m(2)/g and the open porosity of 35% obtained by anodizing for 45 min at 15 V showed the highest photocatalytic activity with a degradation efficiency of similar to 81% in 7 h.
ISSN: 1574-1443
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
  Until 2025-01-01
6.1 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender

Page view(s)

checked on Feb 19, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.