Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13757
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtaç, Enestr
dc.contributor.authorDinleyici, Mehmet Salihtr
dc.date.accessioned2023-10-03T07:15:26Z-
dc.date.available2023-10-03T07:15:26Z-
dc.date.issued2023-
dc.identifier.issn0740-3224-
dc.identifier.issn1520-8540-
dc.identifier.urihttps://doi.org/10.1364/JOSAB.492326-
dc.identifier.urihttps://hdl.handle.net/11147/13757-
dc.description.abstractPrecise determination of thin dielectric film optical properties is a critical issue for fiber optic sensor technologies. However, conventional methods for the optical characterization of these films not only are generally complex and tedious processes on curved surfaces but also require well-calibrated and overly sophisticated devices. We, on the other hand, propose a novel and practical quantum-based phase diffraction scheme to characterize the thickness of ultra-thin transparent dielectric films coated on an optical fiber beyond the classical diffraction limits in this paper. The approach is implemented by evaluating the effect of thickness variations on the highly visible two-photon diffraction pattern's zero crossings and amplitudes. The mathematical model and numerical simulations con-tribute to a better understanding of how the spatially structured entangled photons improve thickness precision with the help of intensity correlations and a confocal aperture. To prove the impact of the proposed system, it is compared with the classical phase diffraction method in the literature via simulations. According to the results, the thickness of the transparent dielectric films can be accurately estimated below one-twentieth of the wavelength of interest. & COPY; 2023 Optica Publishing Groupen_US
dc.language.isoenen_US
dc.publisherOptica Publishing Groupen_US
dc.relation.ispartofJournal of The Optical Society of America B-Optical Physicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectRefractive indexen_US
dc.subjectInterferenceen_US
dc.subjectTemperatureen_US
dc.subjectSensorsen_US
dc.subjectLayeren_US
dc.subjectFBGen_US
dc.titleSubwavelength thickness characterization of curved dielectric films exploiting spatially structured entangled photonsen_US
dc.typeArticleen_US
dc.authorid0000-0002-0694-610X-
dc.authorid0000-0003-2807-3968-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume40en_US
dc.identifier.issue8en_US
dc.identifier.startpage2036en_US
dc.identifier.endpage2042en_US
dc.identifier.wosWOS:001051147700004en_US
dc.identifier.scopus2-s2.0-85166066811en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1364/JOSAB.492326-
local.message.claim2023-10-18T09:44:09.895+0300|||rp00047|||submit_approve|||dc_contributor_author|||None*
dc.authorscopusid57218106507-
dc.authorscopusid6602810237-
dc.identifier.scopusqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

64
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.