Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13999
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Wuqi-
dc.contributor.authorİçin, Öykütr
dc.contributor.authorAhmetoğlu, Çekdar Vakıftr
dc.contributor.authorKober, Delf-
dc.contributor.authorGurlo, Aleksander-
dc.contributor.authorBekheet, Maged F.-
dc.date.accessioned2023-11-11T08:55:02Z-
dc.date.available2023-11-11T08:55:02Z-
dc.date.issued2023-
dc.identifier.issn1616-301X-
dc.identifier.issn1616-3028-
dc.identifier.urihttps://doi.org/10.1002/adfm.202304933-
dc.identifier.urihttps://hdl.handle.net/11147/13999-
dc.descriptionArticle; Early Accessen_US
dc.description.abstractTin-containing silicon oxycarbide (SiOC/Sn) nanobeads are synthesized with different carbon/tin content and tested as electrodes for magnesium-ion batteries. The synthesized ceramics are characterized by thermogravimetric-mass spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, N2 sorption analysis, scanning electron microscope, energy-dispersive X-ray, and elemental analysis. Galvanostatic cycling tests, rate performance tests, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) tests, and ex situ XRD measurements are conducted. Results of battery performance tests present a high capacity of 198.2 mAh g-1 after the first discharging and a reversible capacity of 144.5 mAh g-1 after 100 cycles at 500 mA g-1. Excellent rate performance efficiency of 85.2% is achieved. Battery performances in this research are influenced by surface area, and tin contentof the SiOC/Sn nanobeads. EIS, CV tests, and ex situ XRD measurements reveal that higher surface area contributes to higher capacity by providing more accessible Mg2+ ion storage sites and higher rate capability by improving the diffusion process. Higher Sn content increases battery capacity through reversible Mg-Mg2Sn-Mg alloying/dealloying process and improves the rate performances by increasing electrical conductivity. Besides, SiOC advances cycling stability by preventing electrode collapse and enhances the capacity due to higher surface capacitive effects. SiOC nanobeads containing Sn nanoparticles are synthesized and tested as anode for magnesium-ion batteries. The anodes show high performance with reversible capacity of 144.5 mAh g-1 after 100 cycles at 500 mA g-1 and excellent rate performance efficiency of 85.2% from 50 to 500 mA g-1.imageen_US
dc.description.sponsorshipFunding for open access charge: TUBITAK-ULAKBIM, Turkiye. This research was funded by China Scholarship Council (201606280048). This research was funded by the Alexander von Humboldt (AvH) Foundation. W.G. acknowledges the financial support from the China Scholarship Council. C.V.A. acknowledges the support of the Alexander von Humboldt (AvH) Foundation. Cekdar Vakif Ahmetoglu and Oyku Icin acknowledge the Izmir Institute of Technology, The Center for Materials Research.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofAdvanced Functional Materialsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnodesen_US
dc.subjectEnergy storageen_US
dc.subjectMagnesium batteriesen_US
dc.subjectSilicon oxycarbideen_US
dc.titleMagnesium-ion battery anode from polymer-derived SiOC nanobeadsen_US
dc.typeArticleen_US
dc.authorid0000-0002-8228-7409-
dc.authorid0000-0003-1222-4362-
dc.institutionauthorİçin, Öykütr
dc.institutionauthorAhmetoğlu, Çekdar Vakıftr
dc.departmentİzmir Institute of Technology. Materials Science and Engineeringen_US
dc.identifier.wosWOS:001063030800001en_US
dc.identifier.scopus2-s2.0-85170080372en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1002/adfm.202304933-
dc.authorscopusid57904055700-
dc.authorscopusid57190742107-
dc.authorscopusid24072592200-
dc.authorscopusid56479080800-
dc.authorscopusid6603895787-
dc.authorscopusid55077171800-
dc.authorwosidVakifahmetoglu, Cekdar/F-1835-2014-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Magnesium‐Ion.pdf2.48 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Jul 19, 2024

WEB OF SCIENCETM
Citations

1
checked on Jul 20, 2024

Page view(s)

108
checked on Jul 22, 2024

Download(s)

42
checked on Jul 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.