Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14028
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlagöz, Yusuf-
dc.contributor.authorAlizade, Rafail-
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorSağbaş, Selçuk-
dc.date.accessioned2023-11-11T08:56:17Z-
dc.date.available2023-11-11T08:56:17Z-
dc.date.issued2023-
dc.identifier.issn1995-0802-
dc.identifier.urihttps://doi.org/10.1134/S1995080223070053-
dc.identifier.urihttps://hdl.handle.net/11147/14028-
dc.description.abstractAbstract: We call a right module M weakly neat-flat if (Formula presented.) is surjective for any epimorphism (Formula presented.) and any simple right ideal S . A left module M is called weakly absolutely s-pure if (Formula presented.) is monic, for any monomorphism (Formula presented.) and any simple right ideal S . These notions are proper generalization of the neat-flat and the absolutely s-pure modules which are defined in the same way by considering all simple right modules of the ring, respectively. In this paper, we study some closure properties of weakly neat-flat and weakly absolutely s-pure modules, and investigate several classes of rings that are characterized via these modules. The relation between these modules and some well-known homological objects such as projective, flat, injective and absolutely pure are studied. For instance, it is proved that R is a right Kasch ring if and only if every weakly neat-flat right R -module is neat-flat (moreover if R is right min-coherent) if and only if every weakly absolutely s-pure left R -module is absolutely s-pure. The rings over which every weakly neat-flat (resp. weakly absolutely s-pure) module is injective and projective are exactly the QF rings. Finally, we study enveloping and covering properties of weakly neat-flat and weakly absolutely s-pure modules. The rings over which every simple right ideal has an epic projective envelope are characterized. © 2023, Pleiades Publishing, Ltd.en_US
dc.language.isoenen_US
dc.publisherPleiades Publishingen_US
dc.relation.ispartofLobachevskii Journal of Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAbsolutely s-pure modulesen_US
dc.subjectNeat-flat modulesen_US
dc.subjectAuslander–Bridger transposeen_US
dc.subjectKasch ringsen_US
dc.titleOn purities relative to minimal right idealsen_US
dc.typeArticleen_US
dc.authorid0000-0003-2402-3496-
dc.institutionauthorBüyükaşık, Engin-
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume44en_US
dc.identifier.issue7en_US
dc.identifier.startpage2557en_US
dc.identifier.endpage2566en_US
dc.identifier.wosWOS:001098734800004en_US
dc.identifier.scopus2-s2.0-85175205511en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1134/S1995080223070053-
dc.authorscopusid57199357224-
dc.authorscopusid6701555358-
dc.authorscopusid6504488611-
dc.authorscopusid58669817100-
dc.identifier.scopusqualityQ2-
item.grantfulltextembargo_20260101-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept04.02. Department of Mathematics-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
On-Purities-Relative.pdf
  Until 2026-01-01
592.88 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

44
checked on May 27, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.