Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14366
Title: Patient-specific finite element analysis for assessing hip fracture risk in aging populations
Authors: Chethan, K. N.
Waldschmidt, Nadine Schmidt Genannt
Corda, John Valerian
Shenoy, Satish B.
Shetty, Sawan
Keni, Laxmikant G.
Mihcin, Senay
Keywords: femur modelling
density
fracture
strain
von Mises stress
Publisher: Iop Publishing Ltd
Abstract: The femur is one of the most important bone in the human body, as it supports the body's weight and helps with movement. The aging global population presents a significant challenge, leading to an increasing demand for artificial joints, particularly in knee and hip replacements, which are among the most prevalent surgical procedures worldwide. This study focuses on hip fractures, a common consequence of osteoporotic fractures in the elderly population. To accurately predict individual bone properties and assess fracture risk, patient-specific finite element models (FEM) were developed using CT data from healthy male individuals. The study employed ANSYS 2023 R2 software to estimate fracture loads under simulated single stance loading conditions, considering strain-based failure criteria. The FEM bone models underwent meticulous reconstruction, incorporating geometrical and mechanical properties crucial for fracture risk assessment. Results revealed an underestimation of the ultimate bearing capacity of bones, indicating potential fractures even during routine activities. The study explored variations in bone density, failure loads, and density/load ratios among different specimens, emphasizing the complexity of bone strength determination. Discussion of findings highlighted discrepancies between simulation results and previous studies, suggesting the need for optimization in modelling approaches. The strain-based yield criterion proved accurate in predicting fracture initiation but required adjustments for better load predictions. The study underscores the importance of refining density-elasticity relationships, investigating boundary conditions, and optimizing models through in vitro testing for enhanced clinical applicability in assessing hip fracture risk. In conclusion, this research contributes valuable insights into developing patient-specific FEM bone models for clinical hip fracture risk assessment, emphasizing the need for further refinement and optimization for accurate predictions and enhanced clinical utility.
Description: Shenoy, Satish B/0000-0003-2374-3854; Valerian Corda, John/0000-0002-5677-9653; Mihcin, Senay/0000-0001-5077-8927; Keni, Dr Laxmikant/0000-0001-7010-7186; K N, Dr. Chethan/0000-0002-9399-685X
URI: https://doi.org/10.1088/2057-1976/ad2ff3
https://hdl.handle.net/11147/14366
ISSN: 2057-1976
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Page view(s)

72
checked on Sep 9, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.