Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnlu, Huseyin-
dc.contributor.authorTenekeci, Samet-
dc.contributor.authorCiftci, Can-
dc.contributor.authorOral, Ibrahim Baran-
dc.contributor.authorAtalay, Tunahan-
dc.contributor.authorHacaloglu, Tuna-
dc.contributor.authorDemirors, Onur-
dc.date.accessioned2025-04-25T20:31:39Z-
dc.date.available2025-04-25T20:31:39Z-
dc.date.issued2024-
dc.identifier.isbn9798350380279-
dc.identifier.isbn9798350380262-
dc.identifier.issn2640-592X-
dc.identifier.urihttps://doi.org/10.1109/SEAA64295.2024.00036-
dc.identifier.urihttps://hdl.handle.net/11147/15508-
dc.description.abstractSoftware Size Measurement (SSM) plays an essential role in software project management as it enables the acquisition of software size, which is the primary input for development effort and schedule estimation. However, many small and medium-sized companies cannot perform objective SSM and Software Effort Estimation (SEE) due to the lack of resources and an expert workforce. This results in inadequate estimates and projects exceeding the planned time and budget. Therefore, organizations need to perform objective SSM and SEE using minimal resources without an expert workforce. In this research, we conducted an exploratory case study to predict the functional size of software project requirements using state-of-the-art large language models (LLMs). For this aim, we fine-tuned BERT and BERT_SE with a set of user stories and their respective functional size in COSMIC Function Points (CFP). We gathered the user stories included in different project requirement documents. In total size prediction, we achieved 72.8% accuracy with BERT and 74.4% accuracy with BERT_SE. In data movement-based size prediction, we achieved 87.5% average accuracy with BERT and 88.1% average accuracy with BERT_SE. Although we use relatively small datasets in model training, these results are promising and hold significant value as they demonstrate the practical utility of language models in SSM.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof50th Euromicro Conference on Software Engineering and Advanced Applications -- AUG 28-30, 2024 -- Paris, FRANCEen_US
dc.relation.ispartofseriesEuromicro Conference on Software Engineering and Advanced Applications-
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSoftware Size Measurementen_US
dc.subjectNatural Language Processingen_US
dc.subjectCosmicen_US
dc.subjectBerten_US
dc.subjectFunctional Sizeen_US
dc.subjectSoftware Engineeringen_US
dc.subjectNlpen_US
dc.titlePredicting Software Functional Size Using Natural Language Processing: an Exploratory Case Studyen_US
dc.typeConference Objecten_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.startpage188en_US
dc.identifier.endpage193en_US
dc.identifier.wosWOS:001413352200026-
dc.identifier.scopus2-s2.0-85212703074-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/SEAA64295.2024.00036-
dc.authorscopusid57521977500-
dc.authorscopusid57340107000-
dc.authorscopusid59643575200-
dc.authorscopusid59643575300-
dc.authorscopusid59644134000-
dc.authorscopusid56422190200-
dc.authorscopusid59640759700-
dc.authorwosidDemirors, Onur/R-7023-2016-
dc.authorwosidTenekeci, Samet/Aar-7906-2021-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on May 16, 2025

Page view(s)

28
checked on Jul 21, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.