Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15509
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mi, Hancang | - |
dc.contributor.author | Gan, Hong-Seng | - |
dc.contributor.author | Wang, Xiaoyi | - |
dc.contributor.author | Shimizu, Akinobu | - |
dc.contributor.author | Ramlee, Muhammad Hanif | - |
dc.contributor.author | Unlu, Mehmet Zubeyir | - |
dc.date.accessioned | 2025-04-25T20:31:41Z | - |
dc.date.available | 2025-04-25T20:31:41Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350352900 | - |
dc.identifier.isbn | 9798350352894 | - |
dc.identifier.uri | https://doi.org/10.1109/ICCD62811.2024.10843429 | - |
dc.identifier.uri | https://hdl.handle.net/11147/15509 | - |
dc.description.abstract | Brain tumours are among the most life-threatening diseases, and automatic segmentation of brain tumours from medical images is crucial for clinicians to identify and quantify tumour regions with high precision. While traditional segmentation models have laid the groundwork, diffusion models have since been developed to better manage complex medical data. However, diffusion models often face challenges related to insufficient parallel computing power and inefficient GPU utilization. To address these issues, we propose the DF-SegDiff model, which includes diffusion segmentation, parallel data processing, a distributed training model, a dynamic balancing parameter and model fusion. This approach significantly reduces training time while achieving an average Dice score of 0.87, with several samples reaching Dice values close to 0.94. By combining BRATS2020 with the Medical Segmentation Decathlon dataset, we also integrated a comprehensive dataset containing 800 training samples and 53 test samples. Evaluation of the model using Dice, IoU, and other relevant metrics demonstrates that our method outperforms current state-of-the-art techniques. | en_US |
dc.description.sponsorship | XJTLU Research Development Fund (RDF) [RDF-22-02-042]; Academic Enhancement Fund (AEF); TUBITAK | en_US |
dc.description.sponsorship | All the authors acknowledge the financial support provided by the XJTLU Research Development Fund (RDF) (ref: RDF-22-02-042), Academic Enhancement Fund (AEF) and TUBITAK. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2024 IEEE International Conference on Cognitive Computing and Complex Data -- SEP 28-30, 2024 -- Qinzhou, PEOPLES R CHINA | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Distributed Algorithms | en_US |
dc.subject | Brain Tumour | en_US |
dc.subject | Diffusion | en_US |
dc.subject | Segmentation | en_US |
dc.title | Df-Segdiff: Adiffusion Segmentation Model Using a New Distributed Parallel Computing Algorithm | en_US |
dc.type | Conference Object | en_US |
dc.department | İzmir Institute of Technology | en_US |
dc.identifier.startpage | 13 | en_US |
dc.identifier.endpage | 17 | en_US |
dc.identifier.wos | WOS:001443952000003 | - |
dc.identifier.scopus | 2-s2.0-85218089593 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/ICCD62811.2024.10843429 | - |
dc.authorscopusid | 59562045300 | - |
dc.authorscopusid | 56199630200 | - |
dc.authorscopusid | 59562389600 | - |
dc.authorscopusid | 55794553400 | - |
dc.authorscopusid | 55151528800 | - |
dc.authorscopusid | 55411870500 | - |
dc.authorwosid | Gan, Hong Seng/H-7560-2012 | - |
dc.authorwosid | Ramlee, Muhammad/Aap-1623-2020 | - |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 03.05. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.