Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMi, Hancang-
dc.contributor.authorGan, Hong-Seng-
dc.contributor.authorWang, Xiaoyi-
dc.contributor.authorShimizu, Akinobu-
dc.contributor.authorRamlee, Muhammad Hanif-
dc.contributor.authorUnlu, Mehmet Zubeyir-
dc.date.accessioned2025-04-25T20:31:41Z-
dc.date.available2025-04-25T20:31:41Z-
dc.date.issued2024-
dc.identifier.isbn9798350352900-
dc.identifier.isbn9798350352894-
dc.identifier.urihttps://doi.org/10.1109/ICCD62811.2024.10843429-
dc.identifier.urihttps://hdl.handle.net/11147/15509-
dc.description.abstractBrain tumours are among the most life-threatening diseases, and automatic segmentation of brain tumours from medical images is crucial for clinicians to identify and quantify tumour regions with high precision. While traditional segmentation models have laid the groundwork, diffusion models have since been developed to better manage complex medical data. However, diffusion models often face challenges related to insufficient parallel computing power and inefficient GPU utilization. To address these issues, we propose the DF-SegDiff model, which includes diffusion segmentation, parallel data processing, a distributed training model, a dynamic balancing parameter and model fusion. This approach significantly reduces training time while achieving an average Dice score of 0.87, with several samples reaching Dice values close to 0.94. By combining BRATS2020 with the Medical Segmentation Decathlon dataset, we also integrated a comprehensive dataset containing 800 training samples and 53 test samples. Evaluation of the model using Dice, IoU, and other relevant metrics demonstrates that our method outperforms current state-of-the-art techniques.en_US
dc.description.sponsorshipXJTLU Research Development Fund (RDF) [RDF-22-02-042]; Academic Enhancement Fund (AEF); TUBITAKen_US
dc.description.sponsorshipAll the authors acknowledge the financial support provided by the XJTLU Research Development Fund (RDF) (ref: RDF-22-02-042), Academic Enhancement Fund (AEF) and TUBITAK.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2024 IEEE International Conference on Cognitive Computing and Complex Data -- SEP 28-30, 2024 -- Qinzhou, PEOPLES R CHINAen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistributed Algorithmsen_US
dc.subjectBrain Tumouren_US
dc.subjectDiffusionen_US
dc.subjectSegmentationen_US
dc.titleDf-Segdiff: Adiffusion Segmentation Model Using a New Distributed Parallel Computing Algorithmen_US
dc.typeConference Objecten_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.startpage13en_US
dc.identifier.endpage17en_US
dc.identifier.wosWOS:001443952000003-
dc.identifier.scopus2-s2.0-85218089593-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ICCD62811.2024.10843429-
dc.authorscopusid59562045300-
dc.authorscopusid56199630200-
dc.authorscopusid59562389600-
dc.authorscopusid55794553400-
dc.authorscopusid55151528800-
dc.authorscopusid55411870500-
dc.authorwosidGan, Hong Seng/H-7560-2012-
dc.authorwosidRamlee, Muhammad/Aap-1623-2020-
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

6
checked on May 12, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.