Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15667
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemirkiran, Ismail Gurkan-
dc.contributor.authorNiedermeier, Klarissa-
dc.contributor.authorCetkin, Erdal-
dc.date.accessioned2025-06-26T20:19:07Z-
dc.date.available2025-06-26T20:19:07Z-
dc.date.issued2025-
dc.identifier.issn0196-8904-
dc.identifier.issn1879-2227-
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2025.119998-
dc.identifier.urihttps://hdl.handle.net/11147/15667-
dc.description.abstractHigh-temperature thermal energy storage (TES) is essential for next-generation concentrated solar power (CSP) plants in order to ensure continuous energy supply. Hybridization of latent heat storage (LHS) and sensible heat storage (SHS) enhances energy density, thermal stability, and efficiency by leveraging the high storage capacity of phase change materials (PCMs) while reducing thermal ratcheting for sensible storage. This study focuses on a numerical analysis of a shell-and-tube LHS using sodium as heat transfer fluid (HTF). It examines the impact of hollowed and perforated fins to enhance effective heat exchange. Simulations were conducted in a 3D solution domain using ANSYS Fluent. The results show that fin removal rate and hole placement are crucial design factors. A 20% perforation rate in the Perforated fin-Middle(full) configuration maintains high heat transfer efficiency, reduces material costs, and increases PCM storage. In comparison to molten salts as HTFs, liquid metals exhibit effectively lower HTF outlet temperatures, which is vital for LHS-SHS integration. These findings provide valuable insights for optimizing high-temperature TES units in large-scale CSP applications.en_US
dc.description.sponsorshipEuropean Union [101036910]en_US
dc.description.sponsorshipThis project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036910 within the project StoRIES. The numerical simulations were executed on the bWUniCluster high-performance computing (HPC) system, at Karlsruhe Institute of Technology (KIT) in Baden-Wurttem-berg, Germany. The first author, I smail Gurkan Demirk & imath;ran, would like to further thank the Institute for Thermal Technology and Safety (KIT) for their kind hosting.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigh Temperature Thermal Energy Storageen_US
dc.subjectPerforated Finsen_US
dc.subjectHollow Finsen_US
dc.subjectLiquid Metalsen_US
dc.subjectNatural Convectionen_US
dc.subjectPhase Change Materialsen_US
dc.subjectLatent Heat Storageen_US
dc.titleHollowed and Perforated Fins in Latent Heat Storage Units for High-Temperature Hybrid Thermal Energy Storage Applicationsen_US
dc.typeArticleen_US
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume340en_US
dc.identifier.wosWOS:001503676400002-
dc.identifier.scopus2-s2.0-105006813406-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.enconman.2025.119998-
dc.authorscopusid57222352689-
dc.authorscopusid57190251673-
dc.authorscopusid36155143800-
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

2
checked on Jul 7, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.