Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/15742
Title: | Nanostructured Ox-MWCNT-Ppy-Au Electrochemical Sensor for Ultralow Detection of Retrorsine and Evaluation of Its Cytotoxic Effects on Liver Cells | Authors: | Akturk, Ezgi Zekiye Njjar, Muath Ata, Melek Tunc Kaya, Ahmet Akdogan, Abdullah Onac, Canan |
Keywords: | Electrochemical Sensor Multi Walled Carbon Nanotubes DNA Damage Biomarkers Toxicology Retrorsine |
Publisher: | Taylor & Francis Ltd | Abstract: | This study presents the development of a novel retrorsine (RTS)-imprinted sensor utilizing oxidized multi-walled carbon nanotubes (Ox-MWCNTs), polypyrrole (PPy), and gold nanoparticles (AuNPs), employing square wave voltammetry for the sensitive and selective detection of RTS which causes oxidative-stress and DNA damage. The fabricated Ox-MWCNT-PPy-AuNP sensor demonstrated a surface-area of (0.218 cm2) is 4.25 times larger than a bare glassy carbon electrode, with a low charge transfer resistance (10.9 Omega), enhancing electron transfer kinetics. The sensor showed excellent sensitivity in detecting retrorsine, with a limit of detection of 0.035 nM in synthetic matrices and -0.030 nM in HepaRG cell culture medium. Toxicity assays in HepaRG cells revealed dose-dependent oxidative-stress, with glutathione levels decreasing from 23.08 +/- 0.21 mu mol/109 to 21.21 +/- 0.02 mu mol/109 at 35 mu M retrorsine. Concurrently, GSSG levels increased from 1.32 +/- 0.26 mu mol/109 to 2.22 +/- 0.02 mu mol/109. DNA-damage assessed via comet assay, showed significant increases in tail-moment (2.53 mu m) and tail-migration (16.13 mu m). Oxidative DNA-damage, indicated by 8-OHdG levels, increased significantly from 0.29 +/- 0.02 ng.mL- (control) to 0.47 +/- 0.07 ng.mL- at 35 mu M retrorsine. These findings demonstrate the sensor's effectiveness for retrorsine detection and its applicability in toxicological studies. The integration of nanomaterial engineering and molecular imprinting provides a highly sensitive, selective, and eco-friendly solution for monitoring toxic agents and assessing their biological impacts. | URI: | https://doi.org/10.1080/09205063.2025.2529535 https://hdl.handle.net/11147/15742 |
ISSN: | 0920-5063 1568-5624 |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.