Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15793
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuyukasik, Engin-
dc.date.accessioned2025-07-25T16:55:03Z-
dc.date.available2025-07-25T16:55:03Z-
dc.date.issued2010-
dc.identifier.issn1726-3255-
dc.identifier.issn2415-721X-
dc.identifier.urihttps://hdl.handle.net/11147/15793-
dc.description.abstractLet R be a ring and tau be a preradical for the category of left R-modules. In this paper, we study on modules whose maximal submodules have tau-supplements. We give some characterizations of these modules interms their certain submodules, so called tau-localsubmodules. For some certain preradicals tau, i.e. tau=delta and idempotent tau, we prove that every maximal submodule of M has a tau-supplement if and only if every cofinite submodule of M has a tau-supplement. For a radical tau onR-Mod, we prove that, forevery R-module every submodule is a tau-supplement if and only if R/tau(R) is semisimple and tau is hereditaryen_US
dc.language.isoenen_US
dc.publisherLuhansk Taras Shevchenko Natl Univen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPreradicalen_US
dc.subjectTau-Supplementen_US
dc.subjectTau-Localen_US
dc.titleModules Whose Maximal Submodules Have Τ-Supplementsen_US
dc.typeArticleen_US
dc.institutionauthorBuyukasik, Engin-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.startpage1en_US
dc.identifier.endpage9en_US
dc.identifier.wosWOS:000420549600001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
dc.description.woscitationindexEmerging Sources Citation Index-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.