Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2179
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | İnal, Fikret | - |
dc.date.accessioned | 2016-10-07T07:00:35Z | |
dc.date.available | 2016-10-07T07:00:35Z | |
dc.date.issued | 2006-11 | |
dc.identifier.citation | İnal, F. (2006). Artificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flames. Fuel Processing Technology, 87(11), 1031-1036. doi:10.1016/j.fuproc.2006.08.002 | en_US |
dc.identifier.issn | 0378-3820 | |
dc.identifier.issn | 0378-3820 | - |
dc.identifier.uri | http://doi.org/10.1016/j.fuproc.2006.08.002 | |
dc.identifier.uri | http://hdl.handle.net/11147/2179 | |
dc.description.abstract | Polycyclic aromatic hydrocarbon formation in combustion systems has received considerable attention because of its health effects. The feed-forward, multi-layer perceptron type artificial neural networks with back-propagation learning were used to predict the total PAH amount in atmospheric pressure, premixed n-heptane and n-heptane/oxygenate flames. MTBE and ethanol were used as fuel oxygenates. The total fifty-four data sets were divided into three groups: training, cross-validation, and testing. The different network architectures were tested and the best predictions were obtained for a network of one hidden layer with five neurons. The transfer function was sigmoid function. The mean square and mean absolute errors were 10.52 and 2.60 ppm for the testing set, respectively. The correlation coefficient (R2) was 0.98. The results also showed that the total PAH amount was significantly influenced by the changes in equivalence ratio, presence of fuel oxygenates, and mole fractions of C4 species. | en_US |
dc.description.sponsorship | İzmir Institute of Technology | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Fuel Processing Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Polycyclic aromatic hydrocarbons | en_US |
dc.subject | Neural network | en_US |
dc.subject | PAHs | en_US |
dc.subject | Premixed flame | en_US |
dc.title | Artificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flames | en_US |
dc.type | Article | en_US |
dc.authorid | TR30587 | en_US |
dc.institutionauthor | İnal, Fikret | - |
dc.department | İzmir Institute of Technology. Chemical Engineering | en_US |
dc.identifier.volume | 87 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.startpage | 1031 | en_US |
dc.identifier.endpage | 1036 | en_US |
dc.identifier.wos | WOS:000241960300011 | en_US |
dc.identifier.scopus | 2-s2.0-33749645839 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.fuproc.2006.08.002 | - |
dc.relation.doi | 10.1016/j.fuproc.2006.08.002 | en_US |
dc.coverage.doi | 10.1016/j.fuproc.2006.08.002 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 03.02. Department of Chemical Engineering | - |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
21
checked on Jun 3, 2023
WEB OF SCIENCETM
Citations
17
checked on Jun 3, 2023
Page view(s)
132
checked on May 22, 2023
Download(s)
190
checked on May 22, 2023
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.