Please use this identifier to cite or link to this item:
Title: Cure kinetics of vapor grown carbon nanofiber (VGCNF) modified epoxy resin suspensions and fracture toughness of their resulting nanocomposites
Authors: Seyhan, Abdullah Tuğrul
Sun, Z.
Deitzel, J.
Tanoğlu, Metin
Heider, D.
Keywords: Nanostrcutures
Fracture toughness
Dynamic scanning calorimetry
Issue Date: Nov-2009
Publisher: Elsevier Ltd.
Source: Seyhan, A.T., Sun, Z., Deitzel, J., Tanoğlu, M., and Heider, D. (2009). Cure kinetics of vapor grown carbon nanofiber (VGCNF) modified epoxy resin suspensions and fracture toughness of their resulting nanocomposites. Materials Chemistry and Physics, 118(1), 234-242. doi:10.1016/j.matchemphys.2009.07.045
Abstract: In this study, the cure kinetics of Cycom 977-20, an aerospace grade toughened epoxy resin, and its suspensions containing various amounts (1, 3 and 5 wt.%) of vapor grown carbon nanofibers (VGCNFs) with and without chemical treatment were monitored via dynamic and isothermal dynamic scanning calorimetry (DSC) measurements. For this purpose, VGCNFs were first oxidized in nitric acid and then functionalized with 3-glycidoxypropyltrimethoxy silane (GPTMS) coupling agent. Fourier transform infrared (FTIR) spectroscopy was subsequently used to verify the chemical functional groups grafted onto the surfaces of VGCNFs. Sonication technique was conducted to facilitate proper dispersion of as-received, acid treated and silanized VGCNFs within epoxy resin. Dynamic DSC measurements showed that silanized VGCNF modified resin suspensions exhibited higher heat of cure compared to those with as-received VGCNFs. Experimentally obtained isothermal DSC data was then correlated with Kamal phenomenological model. Based on the model predictions, it was found that silanized VGCNFs maximized the cure reaction rates at the very initial stage of the reaction. Accordingly, an optimized curing cycle was applied to harden resin suspensions. Fracture testing was then carried out on the cured samples in order to relate the curing behavior of VGCNF modified resin suspensions to mechanical response of their resulting nanocomposites. With addition of 1 wt.% of silanized VGCNFs, the fracture toughness value of neat epoxy was found to be improved by 12%. SEM was further employed to examine the fracture surfaces of the samples.
ISSN: 0254-0584
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2317.pdfMakale1.68 MBAdobe PDFThumbnail
Show full item record

CORE Recommender


checked on Dec 2, 2023


checked on Jun 17, 2023

Page view(s)

checked on Dec 4, 2023


checked on Dec 4, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.