Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2626
Title: Weakly distributive modules. Applications to supplement submodules
Authors: Büyükaşık, Engin
Demirci, Yılmaz Mehmet
Keywords: Supplement submodule
Distributive module
Commutative ring
Publisher: Indian Academy of Sciences
Source: Büyükaşık, E., and Demirci, Y. M. (2010). Weakly distributive modules. Applications to supplement submodules. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 120(5), 525-534. doi:10.1007/s12044-010-0053-9
Abstract: In this paper, we define and study weakly distributive modules as a proper generalization of distributive modules. We prove that, weakly distributive supplemented modules are amply supplemented. In a weakly distributive supplemented module every submodule has a unique coclosure. This generalizes a result of Ganesan and Vanaja. We prove that π-projective duo modules, in particular commutative rings, are weakly distributive. Using this result we obtain that in a commutative ring supplements are unique. This generalizes a result of Camillo and Lima. We also prove that any weakly distributive ⊕-supplemented module is quasi-discrete. © Indian Academy of Sciences.
URI: http://doi.org/10.1007/s12044-010-0053-9
http://hdl.handle.net/11147/2626
ISSN: 0253-4142
0253-4142
0973-7685
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2626.pdfMakale127.07 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Sep 6, 2024

WEB OF SCIENCETM
Citations

4
checked on Aug 17, 2024

Page view(s)

234
checked on Sep 2, 2024

Download(s)

160
checked on Sep 2, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.