Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2867
 Title: Solutions of initial and boundary value problems for inhomogeneous burgers equations with time-variable coefficients Other Titles: Katsayıları zamana bağlı homojen Burgers denkleri için başlangıç ve sınır değer problemlerinin çözümleri Authors: Atılgan Büyükaşık, ŞirinBozacı, Aylin Keywords: Burgers equationBoundary-value problemsDirichlet problemHeat equation Issue Date: Jul-2016 Publisher: Izmir Institute of Technology Source: Bozacı, A. (2016). Solutions of initial and boundary value problems for inhomogeneous burgers equations with time-variable coefficients. Unpublished master's thesis, İzmir Institute of Technology, İzmir, Turkey Abstract: In this thesis, we have investigated initial-boundary value problems on semiinfinite line for inhomogeneous Burgers equation with time-variable coecients. We have formulated the solutions for the cases with Dirichlet and Neumann boundary conditions. We showed that the Dirichlet problem for the variable parametric Burgers equation is solvable in terms of a linear ordinary dierential equation and a linear second kind singular Volterra integral equation. Then, for particular models with special initial and Dirichlet boundary conditions we found a class of exact solutions. Next, we considered the Neumann problem and showed that it reduces to a second order linear ordinary dierential equation and the standard heat equation with initial and nonlinear boundary conditions. Finally, we formulated the Cauchy problem for the variable parametric Burgers equation on the non-characteristic line, and obtained its solution in terms of a linear ODE and the series solution of the corresponding Cauchy problem for the heat equation. We gave examples to illustrate how some well known solutions of the Burgers equation can be recovered by solving a corresponding Cauchy problem.Bu tezde zamana bağlı değişken katsayılı, homojen olmayan Burger denklemi için yarı sonsuz aralıkta başlangıç-sınır değer problemlerini araştırdık. Dirichlet ve Neumann sınır koşulları durumlarında çözümler için formülasyonlar elde ettik. Zamana bağlı değişken katsayılı Burger denkleminin bir lineer adi diferansiyel denklem ve bir lineer ikinci çeşit tekil Volterra integral denklemi cinsinden çözülebilir olduğunu gösterdik. Ardından, özel başlangıç ve Dirichlet sınır değer koşullu özel modeller için kesin çözüm sınıfları bulduk. Neumann problemini göz önüne aldık ve bu problemin ikinci mertebeden lineer adi diferansiyel denklem ile ba¸slangıç ve nonlineer sınır koşullarına sahip standart ısı denklemine indirgendiğini gösterdik. Son olarak karakteristik olmayan doğru üzerinde değişken katsayılı Burger denklemi için Cauchy problemini formüle ettik ve bu problemin çözümünü lineer adi diferansiyel denklem ile ısı denklemi için Cauchy problemine karşılık gelen seri çözümü türünden elde ettik. Burger denkleminin bazı iyi bilinen çözümlerinin, ilgili Caucy problemini çözerek nasıl elde edilebileceğini göstermek için örnekler verdik. Description: Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2016Full text release delayed at author's request until 2016.09.24Includes bibliographical references (leaves: 87)Text in English; Abstract: Turkish and Englishvii, 91 leaves URI: http://hdl.handle.net/11147/2867 Appears in Collections: Master Degree / Yüksek Lisans Tezleri

Files in This Item:
File Description SizeFormat

CORE Recommender

Page view(s)

126
checked on Mar 20, 2023