Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3185
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSeyrantepe, Volkanen
dc.contributor.authorPekmezci, Zehra Kevser-
dc.date.accessioned2014-07-22T13:51:02Z-
dc.date.available2014-07-22T13:51:02Z-
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/11147/3185-
dc.descriptionThesis (Master)--Izmir Institute of Technology, Molecular Biology and Genetics, Izmir, 2011en
dc.descriptionIncludes bibliographical references (leaves: 41-61)en
dc.descriptionText in English; Abstract: Turkish and Englishen
dc.descriptionxi, 61 leavesen
dc.description.abstractTay-Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA-/- mice, depleted of β-hexosaminidase A enzyme, remain asymptomatic to 1 year of age, so it was thought there is a difference between human and mice lipid degradation. Previously identified a novel ganglioside metabolizing sialidase, Neu4, is abundantly expressed in mouse brain neurons. It was demonstrated that mice with targeted disruption of both HexA and Neu4 genes (HexA-/- Neu4-/-) show accumulating GM2 ganglioside and epileptic seizures with 40% penetrance. Since all mice didn't show symptoms, it was suggested that Neu4 is not the only sialidase contributing to the metabolic bypass in HexA-/- mice (Seyrantepe et al. 2010). Therefore, we studied the role of another sialidase Neu 1 in glycolipid degradation. We profiled brain glycolipid content of triple deficient mouse model with the deficiency of β-hexosaminidase A (0% activity), sialidase Neu4 (0% activity) and sialidase Neu 1 (10% activity) (NeoIn) by thin layer chromatography. Analysis of both double (HexA-/-NeoIn-/-) and triple (HexA-/-Neu4-/-NeoIn-/-) mice models showed that sialidase Neu 1 deficency causes not significant difference in brain lipid profile and though also other sialidase/sialidases might have role in glycolipid degradation pathway in mice.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lcshTay-Sachs diseaseen
dc.subject.lcshGangliosidesen
dc.subject.lcshNeurastheniaen
dc.subject.lcshMice as laboratory animalsen
dc.subject.lcshThin layer chromatographyen
dc.titleBrain lipid profiling of triply mouse model with the deficiencies of sialidase neu1, neu4 and ß-hexosaminidase a enzymesen_US
dc.typeMaster Thesisen_US
dc.institutionauthorPekmezci, Zehra Kevser-
dc.departmentThesis (Master)--İzmir Institute of Technology, Molecular Biology and Geneticsen_US
dc.relation.publicationcategoryTezen_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
item.languageiso639-1en-
item.fulltextWith Fulltext-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T001004.pdfMasterThesis1.84 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

92
checked on Apr 22, 2024

Download(s)

26
checked on Apr 22, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.