Please use this identifier to cite or link to this item:
Title: Multivariate statistical optimization of enzyme immobilization onto solid matrix using central composite design
Authors: Özdemir, Durmuş
Arpakcı, Tuğba
Issue Date: 2013
Publisher: İzmir Institute of Technology
Izmir Institute of Technology
Abstract: In recent years, scientist have been used alternative technology in order to increase enzyme stability and also reduce the cost of production of enzyme. Immobilization methods have attracted the attention of scientists due to its advantages in comparison with soluble enzyme or other methods. Immobilization process can be affected by many factors for this reason it is important to optimize the effective factors in order to enhance success of this process. In preliminary studies, Bradford protein assay was used for determination of protein concentration. In order to increase sensitivity and accuracy of this assay, Bradford protein assay was combined with a multivariate calibration methods. Genetic Inverse Least Squares (GILS) and Partial Least Squares (PLS) were used for multivariate calibration. Calibration model was constructed for various concentration of Bovine Serum Albumin (BSA). Standard Error of Calibration (SEC) and Standard Error of Prediction (SEP) were calculated and results of multivariate calibration method were compared with univariate calibration methods and each other. In this study, the bovine serum albumin immobilization studies were carried out. The bovine serum albumin was immobilized on chitosan nanoparticles and effective factors such as chitosan concentration, immobilization time, pH and temperature were optimized by using central composite design (CCD). Central composite design is used to investigate interaction between these parameters and to find the optimum values of effective factors.
Description: Thesis (Master)--İzmir Institute of Technology, Chemistry, İzmir, 2013
Includes bibliographical references (leaves: 108-111)
Text in English; Abstract: Turkish and English
xiii, 89 leaves
Appears in Collections:Master Degree / Yüksek Lisans Tezleri

Files in This Item:
File Description SizeFormat 
T001219.pdfMasterThesis6.23 MBAdobe PDFThumbnail
Show full item record

CORE Recommender

Page view(s)

checked on Feb 26, 2024


checked on Feb 26, 2024

Google ScholarTM


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.