Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/3931
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorShahwan, Talalen
dc.contributor.authorÜzüm, Çağrı-
dc.date.accessioned2014-07-22T13:52:46Z-
dc.date.available2014-07-22T13:52:46Z-
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/11147/3931-
dc.descriptionThesis (Master)--İzmir Institute of Technology, Chemistry, İzmir, 2008en
dc.descriptionIncludes bibliographical references (leaves: 68-73)en
dc.descriptionText in English; Abstract: Turkish and Englishen
dc.descriptionxii, 73 leavesen
dc.description.abstractIn recent years Permeable Reactive Barriers (PRBs) are being developed and used in the removal of organic and inorganic pollutants from surface water and groundwater. Zero-valent iron is viewed as an ideal reactive material for PRBs by means of its high sorption/reduction capacity towards various toxic ions. Zero-valent iron synthesized in nanoscale has a greater affinity to reduce/adsorb various toxic aqueous ions by virtue of its large surface area.In this work, nanoscaled (10-100nm) zero-valent iron (nZVI) was synthesized in ethanol by borohydride reduction method in atmospheric conditions. It was observed that iron nanoparticles are mainly in zero-valent oxidation state and that they remain without significant oxidation for weeks. To enhance its effect and usability, nZVI was supported by kaolinite and montmorillonite during synthesis. Characterization of those clay-supported nZVI was performed using XRD, SEM, TEM, EELS, XPS, Zeta Meter, BET-N2. Iron nanoparticles consist of a zero-valent core and a surrounding oxide shell with approximate thickness of 3-5 nm. The application of clays as support materials have led to a partial decrease in the aggregation of iron nanoparticles known to normally form chain-like structure. The diameter of unsupported iron nanoparticles was predominently within the range 20-80 nm, while clay-supported iron nanoparticles existing as dispersed nano spheres had particle diameters within 10-50 nm.The synthesized materials were applied as adsorbents for Co2+ and Cu2+ ions. According to the results , unsupported and clay-supported nZVI has a great capacity to immobilize Co2+ and Cu2+ ions with very fast kinetics. While Co2+ seems to be fixed via the oxohydroxyl groups on the surface of iron nanoparticles, Cu2+ was fixed by a redox mechanism that lead to formation of Cu2O and Cu0. The performed studies indicate that kaolinite- and montmorillonite-supported zero-valent iron nanoparticles are promising reactive materials for environmental applications.en
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.lccTP248.25.N35 U99 2008en
dc.subject.lcshNanotechnology--Laboratory manualsen
dc.subject.lcshIron--Analysisen
dc.titleSynthesis and characterization of clay-supported naoparticles of zero-valent iron and its application for the removal of aqueous Co2+ and Cu2+ ionsen_US
dc.typeMaster Thesisen_US
dc.institutionauthorÜzüm, Çağrı-
dc.departmentThesis (Master)--İzmir Institute of Technology, Chemistryen_US
dc.relation.publicationcategoryTezen_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
item.languageiso639-1en-
item.fulltextWith Fulltext-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T000690.pdfMasterThesis3.89 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

118
checked on Apr 22, 2024

Download(s)

76
checked on Apr 22, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.