Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4190
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAyav, Tolga
dc.contributor.authorHeye, Samuel Bacha-
dc.date.accessioned2014-11-19T08:01:45Z
dc.date.available2014-11-19T08:01:45Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/11147/4190
dc.descriptionThesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2014en_US
dc.descriptionIncludes bibliographical references (leaves. 111-114)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.descriptionxi, 114 leavesen_US
dc.description.abstractData mining is used to extract useful information from large data. But the organizations which mine the data might not be the owner of the data. So, before the owners can make their data accessible for data mining they want to make sure that no sensitive information can be mined from the released data whose discovery by others might harm them. Itemset hiding is one mechanism to prevent the disclosure of sensitive itemsets. In this thesis, a new integer programing based itemset hiding algorithm was developed and a mechanism to speed up the computation time of its implementation was proposed by using parallel computation on Graphical Processing Units (GPUs).en_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectData miningen_US
dc.subjectGraphical Processing Unitsen_US
dc.subject.lcshParallel processing (Electronic computers)en_US
dc.titleParallelization of a novel frequent itemset hiding algorithm on a CPU-GPU platformen_US
dc.title.alternativeYeni bir sık kümeleri gizleme algoritmasının CPU-GPU platformu üzerinde parallelleştirmesien_US
dc.typeMaster Thesisen_US
dc.institutionauthorHeye, Samuel Bacha-
dc.departmentIzmir Institute of Technology. Computer Engineeringen_US
dc.relation.publicationcategoryTezen_US
item.fulltextWith Fulltext-
item.openairetypeMaster Thesis-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
10021883.pdfMasterThesis1.47 MBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

Page view(s)

80
checked on Nov 28, 2022

Download(s)

26
checked on Nov 28, 2022

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.