Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4616
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanoğlu, Metin-
dc.contributor.authorMcKnight, Steven H.-
dc.contributor.authorPalmese, Giuseppe R.-
dc.contributor.authorGillespie, John W.-
dc.date.accessioned2016-05-09T12:56:40Z
dc.date.available2016-05-09T12:56:40Z
dc.date.issued2001-02
dc.identifier.citationTanoğlu, M., McKnight, S. H., Palmese, G. R., and Gillespie, J. W. (2001). Effects of glass-fiber sizings on the strength and energy absorption of the fiber/matrix interphase under high loading rates. Composites Science and Technology, 61(2), 205-220. doi:10.1016/S0266-3538(00)00195-0en_US
dc.identifier.issn0266-3538
dc.identifier.issn0266-3538-
dc.identifier.urihttp://doi.org/10.1016/S0266-3538(00)00195-0
dc.identifier.urihttp://hdl.handle.net/11147/4616
dc.description.abstractThe interphases of various sized E-glass-fiber/epoxy-amine systems were tested at displacement rates in the range 230-2450 μm/s by a new experimental technique (dynamic micro-debonding technique). By this method, the rate-dependent interphase properties, apparent shear strength and absorbed energies due to debonding and frictional sliding, were quantified. The systems include unsized, epoxy-amine compatible, and epoxy-amine incompatible glass fibers. The high displacement rates that induce high-strain-rate interphase loading were obtained by using the rapid expansion capability of piezoelectric actuators (PZT). The results of dynamic micro-debonding experiments showed that the values of interphase strength and specific absorbed energies varied in a manner that is dependent on the sizing and exhibited significant sensitivity to loading rates. The unsized fibers exhibit greater frictional sliding energies that could provide better ballistic resistance, while the compatible sized fibers show higher strength values that improve the structural integrity of the polymeric composites. In addition, significantly higher amounts of energy are absorbed within the frictional sliding regime compared to debonding. By using the experimental data obtained, a case study was performed to reveal the importance of the interphase related micro damage modes on energy absorption (and therefore ballistic performance) of glass/epoxy composite armor.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofComposites Science and Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNonmetallic matrix compositesen_US
dc.subjectCoupling agentsen_US
dc.subjectPolymer-matrix compositesen_US
dc.subjectActuatorsen_US
dc.subjectEnergy absorptionen_US
dc.titleEffects of glass-fiber sizings on the strength and energy absorption of the fiber/matrix interphase under high loading ratesen_US
dc.typeArticleen_US
dc.authoridTR30837en_US
dc.institutionauthorTanoğlu, Metin-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume61en_US
dc.identifier.issue2en_US
dc.identifier.startpage205en_US
dc.identifier.endpage220en_US
dc.identifier.wosWOS:000166750300004en_US
dc.identifier.scopus2-s2.0-0035241916en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/S0266-3538(00)00195-0-
dc.relation.doi10.1016/S0266-3538(00)00195-0en_US
dc.coverage.doi10.1016/S0266-3538(00)00195-0en_US
dc.identifier.scopusqualityQ1-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.dept03.10. Department of Mechanical Engineering-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4616.pdfMakale908.29 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

84
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

62
checked on Mar 27, 2024

Page view(s)

162
checked on Apr 22, 2024

Download(s)

468
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.