Please use this identifier to cite or link to this item:
Title: Thermal stability of the high-N solid-solution layer on stainless steel
Authors: Öztürk, Orhan
Williamson, Don L.
Keywords: Diffusion
Mössbauer spectroscopy
Nitrogen implantation
Stainless steel
X-Ray diffraction
Stainless steel
Issue Date: Sep-2002
Publisher: Elsevier Ltd.
Source: Öztürk, O., and Williamson, D. L. (2002). Thermal stability of the high-N solid-solution layer on stainless steel. Surface and Coatings Technology, 158-159, 288-294. doi:10.1016/S0257-8972(02)00185-8
Abstract: Low-energy, high-flux N ion implantation into austenitic stainless steel held at approximately 400 °C results in dramatic improvements in the tribological properties due to sufficiently large N layer thicknesses and high-N-content solid solution phase. γN. In this paper, post-ion beam processing via isothermal annealing of a low-energy (0.7 keV), high-flux (2.5 mA/cm2) N implanted fee 304 stainless steel held at 400 °C has been investigated by Mössbauer spectroscopy and X-ray diffraction (XRD). Post-implantation annealing at 400 °C demonstrated the metastability and showed that the magnetic γN produced at lower ion energies and higher fluxes transformed systematically to a paramagnetic γN phase with less N content and less lattice expansion, thereby destabilizing the magnetic state of γN. The isothermal annealing results in much thicker γN layers but with less N in solid solution due to the N diffusion into the substrate. Based on the XRD data, the N diffusivity under isothermal annealing conditions is found to be D = 2X10-13 cm2/s at 400 °C, consistent with a model which explains that the trapping by Cr atoms in the stainless steel becomes more effective when N contents are low relative to the Cr concentration ( ~ 19 at.% in 304 stainless steel).
ISSN: 0257-8972
Appears in Collections:Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
4633.pdfMakale144.51 kBAdobe PDFThumbnail
Show full item record

CORE Recommender


checked on Dec 9, 2023


checked on Jun 17, 2023

Page view(s)

checked on Dec 11, 2023


checked on Dec 11, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.