Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/4723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzdemir, Durmuş-
dc.contributor.authorÖztürk, Betül-
dc.date.accessioned2016-06-06T11:16:04Z
dc.date.available2016-06-06T11:16:04Z
dc.date.issued2004
dc.identifier.citationÖzdemir, D., and Öztürk, B. (2004). Genetic multivariate calibration methods for near infrared (NIR) spectroscopic determination of complex mixtures. Turkish Journal of Chemistry, 28(4), 497-514.en_US
dc.identifier.issn1300-0527
dc.identifier.issn1300-0527-
dc.identifier.issn1303-6130-
dc.identifier.urihttp://hdl.handle.net/11147/4723-
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TXprMU56Yz0-
dc.description.abstractThe simultaneous determination of ternary mixtures of methylene chloride, ethyl acetate, and methanol using near infrared (NIR) spectroscopy and 4 different genetic algorithms based multivariate calibration methods was demonstrated. The 4 genetic multivariate calibration methods are genetic partial least squares (GPLS), genetic regression (GR), genetic classical least squares (GCLS) and genetic inverse least squares (GILS). The sample data set contains the NIR spectra of 63 ternary mixtures and covers the range from 900 to 2000 nm in 2 nm intervals. Of these 63 spectra, 42 were used as the calibration set, and 21 were reserved for the prediction purposes. Several calibration models were built with the 4 genetic algorithm based methods for each component that makes up the mixtures. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) were in the range of 0.22 to 2.5 (% by volume (v/v)) for all the 4 methods. A comparison of genetic algorithm selected wavelengths for each component and for each method was also included.en_US
dc.language.isoenen_US
dc.publisherTUBITAKen_US
dc.relation.ispartofTurkish Journal of Chemistryen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGenetic algorithmsen_US
dc.subjectClassical Least Squaresen_US
dc.subjectGenetic regressionen_US
dc.subjectInverse Least Squaresen_US
dc.subjectMultivariate calibrationen_US
dc.subjectNear infrared spectroscopyen_US
dc.titleGenetic multivariate calibration methods for near infrared (NIR) spectroscopic determination of complex mixturesen_US
dc.typeArticleen_US
dc.authoridTR115516en_US
dc.institutionauthorÖzdemir, Durmuş-
dc.institutionauthorÖztürk, Betül-
dc.departmentIzmir Institute of Technology. Chemistryen_US
dc.identifier.volume28en_US
dc.identifier.issue4en_US
dc.identifier.startpage497en_US
dc.identifier.endpage514en_US
dc.identifier.wosWOS:000224772700012en_US
dc.identifier.scopus2-s2.0-6444232884en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinidTXprMU56Yz0en_US
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
crisitem.author.dept04.01. Department of Chemistry-
crisitem.author.dept04.01. Department of Chemistry-
Appears in Collections:Chemistry / Kimya
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
4723.pdfMakale315.25 kBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

Page view(s)

460
checked on Dec 5, 2022

Download(s)

32
checked on Dec 5, 2022

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.