Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5139
Title: Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery
Authors: Sevimli, Sema
Sagnella, Sharon
Kavallaris, Maria
Bulmuş, Volga
Davis, Thomas P.
Keywords: Agarose gel electrophoresis
Cell viability assays
Cellular internalization
Copolymer compositions
Gene transfer
Transfection efficiency
Cholesterol
Publisher: American Chemical Society
Source: Sevimli, S., Sagnella, S., Kavallaris, M., Bulmuş, V., and Davis, T.P. (2013). Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery. Biomacromolecules, 14(11), 4135-4149. doi:10.1021/bm4013088
Abstract: A library of cholesterol-derived ionic copolymers were previously synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization as 'smart' gene delivery vehicles that hold diverse surface charges. Polyplex systems formed with anionic poly(methacrylic acid-co-cholesteryl methacrylate) (P(MAA-co-CMA)) and cationic poly(dimethylamino ethyl methacrylate-co-cholesteryl methacrylate) (Q-P(DMAEMA-co-CMA)) copolymer series were evaluated for their therapeutic efficiency. Cell viability assays, conducted on SHEP, HepG2, H460, and MRC5 cell lines, revealed that alterations in the copolymer composition (CMA mol %) affected the cytotoxicity profile. Increasing the number of cholesterol moieties in Q-P(DMAEMA-co-CMA) copolymers reduced the overall toxicity (in H460 and HepG2 cells) while P(MAA-co-CMA) series displayed no significant toxicity regardless of the CMA content. Agarose gel electrophoresis was employed to investigate the formation of stable polyplexes and determine their complete conjugation ratios. P(MAA-co-CMA) copolymer series were conjugated to DNA through a cationic linker, oligolysine, while Q-P(DMAEMA-co-CMA)-siRNA complexes were readily formed via electrostatic interactions at conjugation ratios beginning from 6:1:1 (oligolysine-P(MAA-co-CMA)-DNA) and 20:1 (Q-P(DMAEMA-co-CMA)-siRNA), respectively. The hydrodynamic diameter, ζ potential and complex stability of the polyplexes were evaluated in accordance to complexation ratios and copolymer composition by dynamic light scattering (DLS). The therapeutic efficiency of the conjugates was assessed in SHEP cells via transfection and imaging assays using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. DNA transfection studies revealed P(MAA-co-CMA)-oligolysine-DNA ternary complexes to be ineffective transfection vehicles that mostly adhere to the cell surface as opposed to internalizing and partaking in endosomal disrupting activity. The transfection efficiency of Q-P(DMAEMA-co-CMA)-GFP siRNA complexes were found to be polymer composition and N/P ratio dependent, with Q-2% CMA-GFP siRNA polyplexes at N/P ratio 20:1 showing the highest gene suppression in GFP expressing SHEP cells. Cellular internalization studies suggested that Q-P(DMAEMA-co-CMA)-siRNA conjugates efficiently escaped the endolysosomal pathway and released siRNA into the cytoplasm. The gene delivery profile, reported herein, illuminates the positive and negative attributes of each therapeutic design and strongly suggests Q-P(DMAEMA-co-CMA)-siRNA particles are extremely promising candidates for in vivo applications of siRNA therapy.
URI: https://doi.org/10.1021/bm4013088
http://hdl.handle.net/11147/5139
ISSN: 1525-7797
1526-4602
1525-7797
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
5139.pdfMakale1.97 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Mar 22, 2024

WEB OF SCIENCETM
Citations

6
checked on Mar 27, 2024

Page view(s)

216
checked on Mar 25, 2024

Download(s)

238
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.