Please use this identifier to cite or link to this item:
Title: Enthalpy-driven selective loading of CdSe0.75S0.25 nanoalloys in triblock copolymer polystyrene-b-polyisoprene-b-polystyrene
Authors: Aşkın, Görkem
Çeçen, Volkan
Ünlütürk, Seçil Sevim
Özçelik, Serdar
Demir, Mustafa Muammer
Keywords: Block copolymers
Quantum dots
Selective loading
Polymer nanocomposites
Issue Date: 1-Sep-2016
Publisher: Elsevier Ltd.
Source: Aşkın, G., Çeçen, V., Ünlütürk, S. S., Özçelik, S., and Demir, M. M. (2016). Enthalpy-driven selective loading of CdSe0.75S0.25 nanoalloys in triblock copolymer polystyrene-b-polyisoprene-b-polystyrene. Materials Today Communications, 8, 91-99. doi:10.1016/j.mtcomm.2016.06.004
Abstract: CdSe0.75S0.25 nanoalloys were blended with asymmetric triblock copolymer of polystyrene-b-polyisoprene-b-polystyrene(PS-SIS) in tetrahydrofuran. The fraction of styrene block varies from 14 to 22% with respect to isoprene by mass. The morphology of the copolymer cast film experiences a phase change from cylinder to lamella. CdSe0.75S0.25 nanoalloys were prepared by two-phase method. The surface of the nanoalloys was capped by either oleic acid (OA) or n-tri-octylphosphonic acid (TOPO) in situ. The mean diameter of the alloyed particles is around 12 nm in both systems. The chemical nature of the nanoalloy surface was found to influence the dispersion of the particles over polymer volume. The size of the nanoalloy domains in PS is 50 nm, on average, consisting of approximately 0.7 wt% nanoalloys. However, the size of the nanoalloy domains is smaller when they are loaded into PS-SIS. The structure formation is predominantly determined by enthalpic compatibilization. Atomic force microscopy results suggest that the nanoalloys capped with TOPO sequester into PS-rich domains and enlarge the domain. On the other hand, the ones capped with OA prefer to locate in polyisoprene domains. The increase of particles over 1.0 wt% distorts the lamella structure.
ISSN: 2352-4928
Appears in Collections:Chemistry / Kimya
Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
6067.pdfMakale4.57 MBAdobe PDFThumbnail
Show full item record

CORE Recommender


checked on Mar 18, 2023

Page view(s)

checked on Mar 20, 2023


checked on Mar 20, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.