Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6954
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorÇetkin, Erdalen_US
dc.contributor.authorKonan, Hasel Çiçek-
dc.date.accessioned2018-11-05T07:17:55Z
dc.date.available2018-11-05T07:17:55Z
dc.date.issued2018-07
dc.identifier.citationKonan, H. Ç. (2018). Snowflake shaped high conductivity inserts for heat transfer enhancement. Unpublished master's thesis, Izmir Institute of Technology, Izmir, Turkeyen_US
dc.identifier.urihttp://hdl.handle.net/11147/6954
dc.descriptionThesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2018en_US
dc.descriptionIncludes bibliographical references (leaves: 53-55)en_US
dc.descriptionText in English; Abstract: Turkish and Englishen_US
dc.description.abstractIn this study we show numerically how thermal resistance in a two-dimensional domain with a point heat source can be reduced with embedded high-conductivity snowflake shaped pathways. The external shape of the domain is square, and its boundaries are adiabatic. Rectangular fins were used as high-conductivity pathways in order to minimize maximum excess temperature (Tmax). The geometry of the inserted pathways was optimized with consideration of Constructal Theory for minimum Tmax. In the first assembly, optimum number of mother (big) fins was uncovered as the area fraction increases. The results of the first assembly indicate that the increase in the number of mother fins does not increase heat transfer after a limit number for the fins, i.e., optimum number of mother fins exits. After uncovering the mother pathway geometry corresponding to the minimum Tmax, the daughter (small) fins inserted at the tip of them, i.e. second assembly. In the second assembly, the fin ratios, small fin location and angle between daughter fins were discovered when the area fraction is fixed. In addition, in the third assembly, larger daughter fins were attached to mother fins. The results of the second and third assemblies document what should be the geometric length scales and the number of daughter fins in order to minimize Tmax. The optimized design uncovers that the fins should be designed similar to snowflake shape. Therefore, the results also uncover snowflakes correspond to the designs with minimum thermal conductivity, i.e., not mimicking the nature but understanding it with physics.en_US
dc.description.abstractBu çalışmada noktasal bir ısı kaynağı içeren iki boyutlu yapıda ısıl direncin kar tanesi şeklindeki yüksek iletkenli eklentilerle nasıl azaltılabileceğini sayısal olarak gösteriyoruz. Yapının dış şekli bir kare ve karenin sınırları ısı geçirmezdir. Yüksek iletkenli eklentiler olarak dikdörtgen eklentiler kullanıldı. En düşük en yüksek sıcaklığı elde etmek için eklentilerin şekli yapısal gelişim teorisine göre geliştirildi. Birinci eklemede, alan oranı arttırılarak anne (büyük) eklentilerin optimal sayısı bulundu. İlk eklemdeki sonuçlara göre, anne eklentilerin sayısındaki artış belirli bir sayıdan sonra ısı iletimini arttırmıyor. Bu durum anne eklentiler için optimal bir sayının olduğunu gösteriyor. Optimal eklenti sayısı, düşük ısıl iletkenli bölgedeki ısıl direnci azaltmak için uygun kısa aralıkları ve bir yalıtım katmanı gibi davranan ısıl sınır katmanlarını ortadan kaldıran uygun uzun aralıkları tasarlamaya benzerdir. En düşük en yüksek sıcaklık için anne eklentilerin geometrisi açığa çıktıktan sonra, yavru (küçük) eklentiler anne eklentilerin ucuna eklendi. Yavru eklentilerin eklenmesi ikinci eklemeyi başlattı. İkinci eklemede alan oranı sabit olduğu zaman, yavru eklentilerin optimal boyut oranları, yavru eklentilerin yeri ve onların arasındaki optimal açı bulundu. Daha büyük yavru eklentiler de anne eklentilere üçüncü eklemede eklendi. İkinci ve üçüncü eklemenin sonuçları, en yüksek sıcaklığı azaltmak için yavru eklentilerin geometrik uzunluk ölçütünün ne olması gerektiğini ve onların sayıları gösteriyor. Optimal tasarım, eklentilerin kar tanesi şekline benzer şekilde tasarlanması gerektiğini ortaya çıkarıyor. Bu sonuçlar kar tanesinin en az ısıl dirence sahip tasarıma uygun olduğunu ortaya çıkarıyor. Bu sonuca doğayı kopyalayarak değil, fiziği anlayarak ulaştık.en_US
dc.format.extentxiii, 55 leavesen_US
dc.language.isoenen_US
dc.publisherIzmir Institute of Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThermal resistanceen_US
dc.subjectConstructal theoryen_US
dc.subjectSnowflakeen_US
dc.subjectHeat transfer enhancementen_US
dc.titleSnowflake shaped high conductivity inserts for heat transfer enhancementen_US
dc.title.alternativeIsı transfer arttırımı için kartanesi şekilli yüksek iletimli eklentileren_US
dc.typeMaster Thesisen_US
dc.institutionauthorKonan, Hasel Çiçek-
dc.departmentThesis (Master)--İzmir Institute of Technology, Mechanical Engineeringen_US
dc.relation.publicationcategoryTezen_US
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
Appears in Collections:Master Degree / Yüksek Lisans Tezleri
Files in This Item:
File Description SizeFormat 
T001785.pdfMasterThesis7.06 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

92
checked on Mar 25, 2024

Download(s)

68
checked on Mar 25, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.